Тепловой поток передаваемый излучением формула. Тепловой поток это. В6Сложный теплообмен и теплопередача

Количество тепла, проходящее через данную поверхность в единицу времени, называется тепловым потоком Q , Вт .

Количество тепла, через единицу поверхности в единицу времени, называется плотностью теплового потока или удельным тепловым потоком и характеризует интенсивность теплообмена.


(9.4)

Чтобы выразить общий эффект конвекции, мы используем закон охлаждения Ньютона: = ℎ 6 3 - 47. Здесь скорость теплопередачи связана с общей разностью температур между стенкой и жидкостью, а площадь поверхность. Излучение В отличие от механизмов проводимости и конвекции, когда передача энергии осуществляется через материальную среду, тепло может также переноситься в районы, где есть идеальный вакуум. В этом случае механизм представляет собой электромагнитное излучение. Радиация может проявлять волнистые или корпускулярные свойства.

Электромагнитное излучение, распространяющееся в результате разности температур; Это называется тепловым излучением. Термодинамические соображения показывают, что идеальный излучатель или черное тело будет излучать энергию со скоростью, пропорциональной четвертой степени абсолютной температуры тела. К уравнению 5 называется закон теплового излучения Штефана-Больцмана, и они применимы только к черным телам. Устойчивая плоская стенка проводимости. Давайте сначала рассмотрим плоскую стену, где может быть выполнено прямое применение закона Фурье.

Плотность теплового потока q , направлена по нормали к изотермической поверхности в сторону, обратную градиенту температуры, т. е. в сторону уменьшения температуры.

Если известно распределение q по поверхности F , то полное количество тепла Q τ , прошедшее через эту поверхность за время τ , найдется по уравнению:

На рисунке 3 показана типичная проблема и ее аналоговая схема. Рис. 3 Одномерный поток тепла через несколько цилиндрических разрезов и их электрический аналог. Сферические системы также могут рассматриваться как одномерные, когда температура является только функцией радиуса. Критическая изоляция. Паровая трубка для иллюстрации критического радиуса изоляции. Предположим, у вас есть паровая труба, которую вы хотите изолировать, чтобы предотвратить потерю энергии и защитить людей от ожогов. Если пар не перегрелся, в трубе конденсируется некоторый пар.

(9.5)

а тепловой поток:

(9.5")

Если величина q постоянна по рассматриваемой поверхности, то:

(9.5")

Закон Фурье

Этот закон устанавливает величину теплового потока при переносе тепла посредством теплопроводности. Французский ученый Ж. Б. Фурье в 1807 году установил, что плотность теплового потока через изотермическую поверхность пропорциональна градиенту температуры:

Температура поверхности трубы-изоляции примерно равна температуре насыщения пара, поскольку тепловое сопротивление на стенке трубы имеет тенденцию быть небольшим и исчезает. Следовательно, падение температуры на стенке трубы будет очень маленьким. На следующем рисунке показан электрический аналог, построенный для этой упрощенной задачи. Внутренний и внешний радиусы изоляции. Для определения критического радиуса изоляции будем действовать следующим образом. Радиальная проводимость тепла через полый шар Рисунок 1 Проведение тепла через полый шар Создание энергетического баланса в дифференциальном элементе объема для определения соответствующего дифференциального уравнения.


(9.6)

Знак минус в (9.6) указывает, что тепловой поток направлен в сторону, обратную градиенту температуры (см. рис. 9.1.).

Плотность теплового потока в произвольном направлении l представляет проекцию на это направление теплового потока в направлении нормали:

Вышеприведенное уравнение является подходящим дифференциальным уравнением для распределения температуры в сфере полая. Два граничных условия, связанные с этой проблемой, заключаются в следующем: поскольку чем толще изолятор, тем ниже скорость теплопередачи, так как площадь стенки постоянна, а при ее изоляции она увеличивает тепловое сопротивление без увеличения сопротивление конвекции. Но с цилиндрами и сферами происходит что-то другое, когда вы его изолируете. Процесс обмена энергией в виде тепла между различными телами или между различными частями того же тела, которые находятся при различной температуре.

Коэффициент теплопроводности

Коэффициент λ , Вт/(м·К), в уравнении закона Фурье численно равен плотности теплового потока при падении температуры на один Кельвин (градус) на единицу длины. Коэффициент теплопроводности различных веществ зависит от их физических свойств. Для определённого тела величина коэффициента теплопроводности зависит от структуры тела, его объёмного веса, влажности, химического состава, давления, температуры. В технических расчётах величину λ берут из справочных таблиц, причём надо следить за тем, чтобы условия, для которых приведено в таблице значение коэффициента теплопроводности, соответствовали условиям рассчитываемой задачи.

Теплопередача всегда происходит от более теплого тела до более холодного, в результате Второго закона термодинамики. Передача тепла происходит до тех пор, пока тела и их окрестности не достигнут теплового равновесия. Тепло передается конвекцией, излучением или проводимостью. Хотя эти три процесса могут происходить одновременно, может случиться, что один механизм преобладает над двумя другими.

Электромагнитное излучение представляет собой комбинацию электрических и магнитных полей, осциллирующих и перпендикулярных друг другу, распространяющихся через пространство, несущее энергию из одного места в другое. В отличие от проводимости и конвекции, или других типов волн, таких как звук, которым необходима материальная среда для распространения, электромагнитное излучение не зависит от материи для ее распространения, на самом деле передача энергии излучением более эффективными в вакууме. Однако на скорость, интенсивность и направление потока энергии влияет присутствие вещества.

Особенно сильно зависит коэффициент теплопроводности от температуры. Для большинства материалов, как показывает опыт, эта зависимость может быть выражена линейной формулой:

(9.7)

где λ o - коэффициент теплопроводности при 0 °С;

β - температурный коэффициент.

Таким образом, эти волны могут проходить межпланетное и межзвездное пространство и достигать Земли от. Вулканизм, сейсмическая активность, явления метаморфизма и орогенеза - это некоторые из явлений, которые контролируются переносом и выделением тепла. Фактически, тепловой баланс Земли контролирует активность в литосфере, в астеносфере, а также во внутренней части планеты.

Тепло, достигающее поверхности Земли, имеет два источника: внутреннее пространство планеты и солнце. Часть этой энергии возвращается в космос. Если принято, что солнце и биосфера поддерживают среднюю температуру на поверхности планеты с небольшими колебаниями, то теплота, исходящая изнутри планеты, обусловливает геологическую эволюцию планеты, то есть она контролирует тектонику плит, магматизма, генерации горных цепей, эволюции внутренней части планеты, в том числе ее магнитного поля.

Коэффициент теплопроводности газов , а в особенности паров сильно зависит от давления. Численное значение коэффициента теплопроводности для различных веществ меняется в очень широких пределах - от 425 Вт/(м·К) у серебра, до величин порядка 0,01 Вт/(м·К) у газов. Это объясняется тем, что механизм передачи теплоты теплопроводностью в различных физических средах различен.

Это физическое свойство материала и является мерой способности материала «проводить» тепло. Если рассматривать одномерный случай, то закон Фурье записывается. Если тепловой поток и температура среды не изменяются со временем, процесс считается стационарным. Если в объеме материала нет тепла, мы будем иметь. Где ρ - плотность материала. Это выражение позволяет вычислять температуру в точках в пределах области при условии наложения граничных условий.

Мы можем применить это уравнение, чтобы попытаться узнать что-то о распределении температуры внутри планеты, используя в качестве граничных условий поток и температуру, известные поверхности. Интегрирование этого уравнения снова дает. Это последнее выражение может быть использовано для определения изменения температуры с глубиной. Рассмотрим, следовательно, случай Земли, полагая, что тепло переносится, главным образом, проводимостью. Кривая температуры-глубины называется «геотермальной». Анализ рисунка показывает, что на глубинах более 100 км мантия должна иметь значительное плавление, а для глубин более 150 км должна плавиться вся мантия.

Металлы имеют наибольшее значение коэффициента теплопроводности. Теплопроводность металлов уменьшается с ростом температуры и резко снижается при наличии в них примесей и легирующих элементов. Так, теплопроводность чистой меди равна 390 Вт/(м·К), а меди со следами мышьяка - 140 Вт/(м·К). Теплопроводность чистого железа 70 Вт/(м·К), стали с 0,5 % углерода - 50 Вт/(м·К), легированной стали с 18 % хрома и 9 % никеля - только 16 Вт/(м·К).

Эти «предсказания» не согласуются с информацией, полученной в результате изучения распространения сейсмических волн, поэтому мы должны сделать вывод о том, что модель теплопроводности не предсказывает правильно профиль температур в мантии. Несмотря на то, вождение модель не в прогнозировании температуры в верхней мантии, она представляет значительный успех при применении к внешней части планеты, т.е. земной коры, где внутреннее тепло главным образом в результате радиоактивного распада и транспортируется на поверхность, путем вождения.

Зависимость теплопроводности некоторых металлов от температуры показана на рис. 9.2.

Газы имеют невысокую теплопроводность (порядка 0,01...1 Вт/(м·К)), которая сильно возрастает с ростом температуры.

Теплопроводность жидкостей ухудшается с ростом температуры. Исключение составляют вода и глицерин . Вообще коэффициент теплопроводности капельных жидкостей (вода, масло, глицерин) выше, чем у газов, но ниже, чем у твердых тел и лежит в пределах от 0,1 до 0,7 Вт/(м·К).

Мы вернемся к этой проблеме при изучении теплового потока на континентах. Рассмотрим слой жидкости, нагретой в нижней части и охлажденный в верхней части. Когда жидкость нагревается, ее плотность уменьшается из-за расширения. В рассматриваемом случае верхняя часть жидкого слоя будет более холодной и, следовательно, плотнее нижней. Эта ситуация является гравитационно неустойчивой, препятствуя охлаждению жидкой жидкости, и чем больше нагревается, тем быстрее возникают конвекционные токи. Движение жидкости обусловлено движущими силами.

Рассмотрим, таким образом, прямоугольный жидкостный элемент, как показано на рисунке. Силами, действующими на элемент жидкости, являются: силы из-за градиента давления, силы тяжести и силы тяги. Для последнего необходимо учитывать плотность жидкости. Вертикальная составляющая полученной силы будет тогда.



Рис. 9.2. Влияние температуры на коэффициент теплопроводности металлов

Инструкция

Теплота является суммарной кинетической энергией молекул тела, переход которой от одних молекул к другим или от одного тела к другому может осуществляться посредством трех типов передачи: теплопроводностью, конвекцией и тепловым излучением.

Хотя радиоактивные изотопы существуют в небольших количествах в земной коре и также менее распространены в мантии, его естественный распад производит значительное количество тепла, как можно видеть из таблицы слева. Наиболее важными элементами этого процесса являются уран, торий и калий; видно, что вклад урана и тория выше, чем у калия.

В следующей таблице представлена ​​концентрация радиоактивных элементов и тепловое образование некоторых пород. Гранит - это камень, который выделяет больше тепла из-за распада радиоактивных материалов, поскольку он имеет самую высокую концентрацию этих элементов. Измерение тепла, генерируемого земной корой, в настоящее время может быть использовано для расчета тепла, выделяемого в прошлом. С другой стороны, концентрация радиоактивных элементов может быть использована в датировке горных пород.

При теплопроводности тепловая энергия переходит от более нагретых частей тела к более холодным. Интенсивность ее передачи зависит от градиента температур , а именно от отношения разности температур, а также площади поперечного сечения и коэффициента теплопроводности . В таком случае формула для определения теплового потока q выглядит так:q = -kS(∆T/∆x), где:k - коэффициент теплопроводности материала;S – площадь поперечного сечения.

Скорость распада радиоактивного изотопа дается формулой. Хотя скорость выработки тепла в земной коре примерно на два порядка выше, чем у мантии, необходимо учитывать скорость производства мантии, поскольку объем мантии намного выше объема коры. Эта реакция была произведена в лаборатории при температурах и давлениях порядка тех, которые находятся на границе сердцевины-мантии.

На рисунке показано распределение теплового потока вдоль Земли. Тепло, потерянное через поверхность планеты, равномерно распределено. В следующей таблице приведены основные вклады: 73% тепла теряется через океаны, которые составляют 60% поверхности Земли. Большая часть тепла теряется при создании и охлаждении океанической литосферы, когда новый материал отходит от средних гребней. Тектоника плит принципиально связана с охлаждением Земли. С другой стороны, представляется, что средняя скорость создания дна океана определяется балансом между темпами выработки тепла и общей скоростью потери той же самой высокой температуры на всей поверхности планеты.

Эта формула называется законом теплопроводности Фурье, а знак минус в формуле указывает направление вектора теплового потока, который противоположен градиенту температуры. Согласно этому закону, понижению теплового потока можно добиться, уменьшив один из его составляющих. Например, можно воспользоваться материалом с другим коэффициентом теплопроводности, меньшим поперечным сечением или разностью температур.

В моделях тектоники плиты восхождение мантийных материалов происходит на океанских хребтах. Эти материалы после охлаждения приводят к появлению новой океанической коры. При удалении от восходящей зоны новая кора остывает до больших глубин, образуя более толстую и толстую жесткую пластину.

На следующем рисунке показаны наблюдаемые значения теплового потока в зависимости от возраста океанической литосферы, а также значения, рассчитанные по теоретической модели. Учитывая сказанное в предыдущем абзаце, этот график можно интерпретировать как представление значений потока как функции расстояния до хребта. Как видно, тепловой поток вблизи океанических хребтов имеет высокие значения, уменьшаясь при удалении от восходящей зоны мантийных материалов. Сравнивая наблюдаемые значения с вычисленными значениями, проверяется, что потоки, полученные из моделей, выше, чем те, которые наблюдаются вблизи хребта.

Конвективный тепловой поток осуществляется в газообразных и жидких веществах. В этом случае говорят о передаче тепловой энергии от нагревателя к среде , которая зависит от совокупности факторов: размера и формы нагревающего элемента, скорости движения молекул, плотности и вязкости среды и пр. В этом случае применима формула Ньютона:q = hS(Tэ - Tср), где:h – коэффициент конвективного переноса, отражающий свойства нагреваемой среды;S – площадь поверхности нагревательного элемента;Tэ – температура нагревательного элемента;Tср – температура окружающей среды.

Тепловое излучение – метод передачи тепла, который являются разновидностью электромагнитного излучения . Величина теплового потока при такой теплопередаче подчиняется закону Стефана-Больцмана:q = σS(Ти^4 – Тср^4), где:σ – постоянная Стефана-Больцмана;S – площадь поверхности излучателя;Tи – температура излучателя;Тср – температура окружающей среды, поглощающей излучение.

Если поперечное сечение объекта имеет сложную форму, для вычисления его площади следует разбить его на участки простых форм. После этого появится возможность рассчитать площади этих участков по соответствующим формулам, а затем их сложить.

Инструкция

Разделите поперечное сечение объекта на области , имеющие формы треугольников, прямоугольников, квадратов, секторов, кругов, полукругов и четвертей кругов. Если в результате разделения будут получаться ромбы, разделите каждый из них на два треугольника, а если параллелограммы - на два треугольника и один прямоугольник . Измерьте размеры каждой из этих областей: стороны, радиусы. Все измерения осуществляйте в одинаковых единицах.

Прямоугольный треугольник можно представить в виде половины прямоугольника , разделенного надвое по диагонали. Для расчета площади такого треугольника умножьте друг на друга длины тех сторон, которые примыкают к прямому углу (они называются катетами), затем результат умножения поделите на два. Если же треугольник прямоугольным не является , для расчета его площади вначале проведите в нем из любого угла высоту. Он окажется разделенным на два разных треугольника, каждый из которых будет прямоугольным. Измерьте длины катетов каждого из них, а затем по результатам измерений вычислите их площади.

Чтобы вычислить площадь прямоугольника, умножьте друг на друга длины двух его примыкающих друг к другу сторон. У квадрата они равны, поэтому можно длину одной стороны умножить саму на себя, то есть, возвести ее в квадрат.

Для определения площади