Какой фундамент для дома, если почва суглинок? Почва суглинистая: свойства, достоинства, недостатки, растения Глина тугопластичная характеристики.

МИНИСТЕРСТВО АВТОМОБИЛЬНЫХ ДОРОГ РСФСР

ГОСУДАРСТВЕННЫЙ ДОРОЖНЫЙ ПРОЕКТНО-ИЗЫСКАТЕЛЬСКИЙ И НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ
ГИПРОДОРНИИ

ЭТАЛОН
ОТЧЕТА ПО ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИМ ИЗЫСКАНИЯМ
ПРИ ПРОЕКТИРОВАНИИ АВТОМОБИЛЬНЫХ ДОРОГ
И МОСТОВЫХ ПЕРЕХОДОВ

Утвержден на заседании секции НТС

Гипродорнии проектной части

Протокол № 10 от 23.12.86

МОСКВА 1987

Эталон отчета по инженерно-геологическим изысканиям при проектировании автомобильных дорог и мостовых переходов/ Гипродорнии. - М.: ЦБНТИ Минавтодора РСФСР. 1987.

Основная задача выпуска Эталона - унификация форм полевой, лабораторной и камеральной документации инженерно-геологических работ.

Эталоном отчета предусмотрены все основные виды записок, чертежей, ведомостей и графиков, выпускаемых геологической службой Гипродорнии. При составлении Эталона были учтены требования действующих государственных стандартов, нормативных документов и пособий к ним.

Разработан гл. геологом - инженером Р.Т. Власюком (технический отдел Гипродорнии) в развитие ранее изданных (в 1985 г.) образцов оформления инженерно-геологических паспортов при изысканиях автомобильных дорог.

Директор института

канд. техн. наукЕ.К. Купцов

1. ОБЩИЕ ПОЛОЖЕНИЯ

Технический отчет по инженерно-геологическим изысканиям должен содержать все данные, необходимые для разработки проектно-сметной документации, соответствующей стадии проектирования автомобильных дорог.

Отчеты по подробным инженерно-геологическим изысканиям (для составления проекта и рабочего проекта) должны состоять из пояснительной записки, текст которой иллюстрируется рисунками и фотографиями, графических приложений, ведомостей, инженерно-геологических паспортов мостовых переходов, путепроводов, мест индивидуального проектирования земляного полотна, площадок под здания и сооружения, месторождений грунта и дорожно-строительных материалов.

Указания по составлению и составу инженерно-геологических паспортов приведены в образцах оформления инженерно-геологических паспортов при изысканиях автомобильных дорог и сооружений на них, изданных техническим отделом Гипродорнии в 1985 г.

В настоящем Эталоне даны общие указания об объеме отчета по инженерно-геологическим изысканиям. В каждом отдельном случае его определяют индивидуально в зависимости от местных условий, особенно это относится к изысканиям мостовых переходов.

Образец титульного листа отчета

МИНИСТЕРСТВО АВТОМОБИЛЬНЫХ ДОРОГ РСФСР
ГИПРОДОРНИИ
(Филиал)

ОТЧЕТ
ПО ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИМ РАБОТАМ ДЛЯ
СОСТАВЛЕНИЯ ПРОЕКТА (РАБОЧЕГО ПРОЕКТА)
НА СТРОИТЕЛЬСТВО (РЕКОНСТРУКЦИЮ)
АВТОМОБИЛЬНОЙ ДОРОГИ (МОСТОВОГО ПЕРЕХОДА
ЧЕРЕЗ р. …………………..)………………………………….

Начальник отделаИ.О. Фамилия

Главный геолог (специалист) отделаИ.О. Фамилия

Главный (старший) геолог

экспедиции (партии)И.О. Фамилия

19 ... г.

2. СХЕМА ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ

2.1. Введение

Административные и географические границы района изысканий.

По чьему заданию осуществлены работы.

Время производства работ.

Степень изученности территории объекта изысканий.

Организация полевых работ (количество партий, отрядов).

Производители работ (главный геолог, начальник партии, ст. инженер и т.д.). Должность, фамилия автора отчета.

Технология производства инженерно-геологических работ (проходка шурфов и буровых скважин, тип и марка станков, геофизические методы разведки, полевые методы исследования грунтов).

Полнота и качество выполненных работ.

2.2. Природные условия района, работ

2.2.1. Климат:

Общая климатическая характеристика района с указанием климатических зон по участкам трассы;

Осадки, распределение их по месяцам, ливни, средняя многолетняя и максимальная толщина снежного покрова, число дней со снегопадом, продолжительность периода снежных метелей и число дней с метелями, продолжительность зимнего периода;

Сведения дорожно-эксплуатационной службы о снегозаносах на дорогах в районе проложения трассы;

Число дней с оттепелями, гололедом, туманами;

Средние, максимальные и минимальные температуры воздуха, переход среднесуточных температур через 0 и 5 градусов; глубина промерзания почвы, абсолютная и относительная влажность воздуха, даты замерзания и вскрытия рек, сведения о снежных лавинах и селевых паводках для горных районов;

Ветер; господствующие ветры по временам года, ветры со скоростью свыше 4 м/с. Зимняя роза ветров, а в южных засушливых районах - летняя.

2.2.2. Рельеф и гидрография:

Общая геоморфологическая характеристика района проложения трассы автомобильной дороги;

Районирование трассы по рельефу;

Обеспеченность естественного стока воды, заболачиваемость;

Гидрографическая сеть района проложения трассы;

Перечень средних и больших мостовых переходов.

2.2.3. Почвы и растительность:

Общая характеристика почв района в целом и по участкам;

Описание основных типов почв вдоль трассы автомобильной дороги;

Растительный покров района проложения трассы автомобильной дороги;

Возможность использования растительности для дорожного строительства.

2.2.4. Геология, тектоника и гидрогеология:

Особенность тектоники района, сейсмичность;

Краткая характеристика геологического строения района проложения трассы дороги в целом и по отдельным участкам;

Характеристика и глубина залегания коренных пород;

Характеристика пород четвертичного возраста;

Условия поверхностного стока, формирование верховодки;

Грунтовые воды, распространение и особенности их залегания;

Расчетный уровень горизонта грунтовых вод и методы его определения при инженерно-геологическом обследовании;

Химический состав грунтовых и поверхностных вод (агрессивные свойства по отношению к бетону, пригодность для затворения бетона, пригодность для питья);

Источники получения воды для технических целей (полив при укладке земляного полотна).

2.3.1. Грунты:

Общая характеристика грунтов инженерно-геологических элементов по всему протяжению трассы и по участкам;

Гранулометрический состав и физические свойства основных грунтовых разностей (естественная влажность, оптимальная влажность и плотность, определяемая на приборе стандартного уплотнения Союздорнии, пределы пластичности) категории грунтов по трудности разработки;

Оценка грунтов как строительного материала для возведения земляного полотна и как основания дорожных сооружений;

Химический состав (содержание водорастворимых солей в районе развития засоленных почв) по данным местных сельскохозяйственных предприятий и по данным собственных лабораторных исследований.

2.3.2. Современные физико-геологические процессы:

Наличие и интенсивность проявления современных физико-геологических процессов, их влияние на работу и устойчивость дорожных сооружений;

Наличие оползневых явлений, осыпей, карста, болот, мокрых выемок и других мест, требующих индивидуального проектирования земляного полотна.

2. 3 .3. Инженерно-геологические условия строительства:

Особенности строительства участков типового и индивидуального проектирования земляного полотна;

Особенности строительства искусственных сооружений и объектов ПГС.

Примечание. при необходимости можно составлять по трассе автомобильной дороги и дорожным сооружениям в целом или отдельно по земляному полотну, малым искусственным сооружениям, мостовым переходам и путепроводам и объектам ПГС.

2.4. Дорожно-строительные материалы

Использованные литературные и архивные источники - данные изысканий прежних лет, а также данные для решения вопроса обеспечения объекта строительными материалами.

Оценка геологического строения рассматриваемого района проложения автомобильной дороги в части возможности и условий получения дорожно-строительных материалов.

Краткая общая характеристика обследованных и разведанных месторождений дорожно-строительных материалов по группам камня, гравия, песка. Марки и классы материалов по СНиП.

Притрассовые месторождения грунтов для отсыпки насыпей. Их расположение, условия разработки и транспортировки.

Наличие действующих карьеров и баз по переработке дорожно-строительных материалов. Качество материалов, условия их получения и доставки.

Наличие предприятий местной промышленности, дающих отходы, пригодные к использованию в качестве материалов для дорожно-строительных работ. Условия получения и доставки отходов. Качество отходов как дорожно-строительных материалов.

Анализ обеспеченности строительства местными и привозными дорожно-строительными материалами и их качественная характеристика.

2.5. Результаты обследования существующих автомобильных дорог

2.5.1. Земляное полотно:

Характеристика земляного полотна в целом и по характерным участкам;

Деформации, повреждения и разрушения земляного полотна;

Степень уплотнения земляного полотна;

Состояние водоотвода;

2.5.2. Дорожная одежда:

Состояние дорожной одежды в целом и по характерным участкам;

Наличие и мощность конструктивных слоев дорожной одежды;

Состав и характеристика конструктивных слоев дорожной одежды;

2.6. Выводы

Основные результаты инженерно-геологических исследований трассы автомобильной дороги и дорожных сооружений.

Примечания.

1. Текст записки иллюстрируется фотографиями производственных процессов, видов ландшафта местности, характерных обнажений, отдельных сложных мест, переходов через водотоки, отдельных участков, показывающих состояние существующих дорог и т.п.

2. Климат района может быть представлен графиками климатических данных, кривыми температур, осадков и розами ветров.

Для засушливых районов следует прилагать не только зимнюю розу ветров, но и летнюю.

3. При сдаче отчета в геологический фонд его состав и оформление должны отвечать требованиям к отчетным материалам, сдаваемым в геологический фонд Мингео СССР и в Мособлгеофонд.

4. ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ

И ГИДРОГЕОЛОГИЧЕСКИЕ УСЛОВИЯ

В геологическом строении исследованного участка проектируемых внутриплощадочных линейных инженерных сетей до разведанной глубины 5,0м участвуют четвертичные суглинисто-супесчаные отложения покровного (pQ III - IV), флювиогляциального (fQ II), озерно-ледникового (lgQ II) и моренного (gQ II) генезиса, перекрытые с поверхности почвенно-растительным слоем (черт.3-7).

Почвенно-растительный слой с корнями травянистой растительности представлен мерзлым суглинистым гумусированным грунтом буровато-коричневого цвета, мощностью 0,1-0,3м.

Покровные отложения (pQ III - IV) распространены повсеместно, залегают с поверхности и представлены суглинками полутвердыми, в кровле слоя до глубины 0,5м – мерзлыми, темно-коричневыми и буровато-коричневыми, пылеватыми, с растительными остатками. Мощность покровных суглинков изменяется от 0,6 до 1,6м.

Флювиогляциальные отложения (fQ II) распространены повсеместно, залегают под покровными суглинками с глубины 0,7-1,8м и представлены:

а) суглинками тугопластичными, коричневыми и светло-желто-коричневыми, легкими и тяжелыми, с включениями гравия и гальки до 3-5%, песчанистыми, с гнездами песка желто-коричневого, мелкого, влажного. Залегают выдержанным слоем мощностью 1,4-2,3м.

б) супесями пластичными, коричневыми и желтовато-коричневыми, иногда суглинками мягкопластичными, песчанистыми, с прослойками и линзами песка желто-коричневого, пылеватого, влажного. Залегают с глубины 2,2-4,0м маломощным слоем мощностью 0,5-1,4м.

Озерно-ледниковые отложения (lgQ II) распространены в юго-восточной части площадки, залегают под флювиогляциальными отложениями с глубины 3,5-4,7м и представлены суглинками (до глин) полутвердыми, реже - тугопластичными, светло-серыми и серо-коричневыми, с зеленоватым оттенком, тяжелыми, с включением гравия и гальки до 10%, вскрытой мощностью до 0,8м.

Моренные отложения (gQ II) залегают с глубин 3,9-4,9м под флювиогляциальными или озерно-ледниковыми отложениями и представлены суглинками полутвердыми, тяжелыми, красно-коричневыми и буровато-коричневыми, с включением гальки, дресвы и щебня до 10-15%, слабопесчанистыми. Вскрытая мощность моренных суглинков до 1,1м.

Гидрогеологические условия исследованной площадки

Стр.9

5. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА

И СВОЙСТВА ГРУНТОВ

По данным бурения 21 скважины на глубину до 5,0м, лабораторных исследований грунтов, а также с учетом архивных материалов , площадка проектируемых внутриплощадочных линейных инженерных сетей, представлена грунтами четырех стратиграфо-генетических комплексов (СГК), содержащих в своем составе 5 инженерно-геологических элементов (ИГЭ), с относительно равномерным, но с выклиниванием отдельных ИГЭ, напластованием грунтов, в том числе:

Таблица 5.1

Генезис и возраст

Наименование грунта

Мощность

Суглинок полутвердый

Суглинок тугопластичный

Супесь пластичная

Суглинок (до глины) полутвердый

вскрытая

Суглинок полутвердый

вскрытая

Ниже приводится краткая характеристика основных стратиграфо-генетических комплексов и выделенных ИГЭ.

I . Покровные отложения (pQ III ) распространены повсеместно, залегают под почвенно-растительным слоем и представлены полутвердым (в кровле - до глубины 0,5м – мерзлым) пылеватым суглинком, мощностью 0,6-1,6м.

ИГЭ-1. Суглинок покровный полутвердый , с растительными остатками.

По лабораторным испытаниям суглинок ИГЭ-1 характеризуется следующими средними значениями параметров физических свойств:

влажность на границе раскатывания W p -19,8%;

число пластичности I p -13,2%;

природная влажность W п -21,5%;

показатель текучести I L - 0,13;

плотность грунта r – 1,94 г/см 3 ;

коэффициент пористости е –0,70.

По степени морозоопасности покровные суглинки ИГЭ-1, с учетом показателя текучести I L = 0,13, являются слабопучинистыми, с относительной деформацией пучения от 0,01 до 0,035 д.е. (табл. Б-27, ГОСТ 25100).

II . Комплекс водно-ледниковых (флювиогляциальных) отложений времени регрессии московского ледника (f Q II ) имеет повсеместное распространение, залегает с глубины 0,7-1,8м под покровными суглинками и представлен, в основном, суглинисто-супесчаными отложениями, с гнездами и прослоями песков. В составе водно-ледникового комплекса выделены два инженерно-геологических элемента:

- суглинок ИГЭ-2 - распространен повсеместно, залегает выдержанным слоем мощностью 1,4-2,3м;

Стр.10

- супесь ИГЭ-3 - распространена повсеместно, залегает в виде маломощного слоя мощностью от 0,5м до 1,4м.

ИГЭ-2. Суглинок флювиогляциальный тугопластичный, легкий и тяжелый, с включениями гравия и гальки до 3-5%, песчанистый, с гнездами песка мелкого, влажного.

По лабораторным испытаниям суглинок ИГЭ-2 характеризуется следующими средними значениями параметров физических свойств:

число пластичности I p -11,3%;

природная влажность W п -21,9%;

показатель текучести I L - 0,34;

плотность грунта r – 1,99 г/см 3 ;

коэффициент пористости е –0,66.

По степени морозоопасности флювиогляциальные суглинки ИГЭ-2, с учетом показателя текучести I L =0,34, являются среднепучинистые, с относительной деформацией пучения от 0,035 до 0,07 д.е. (табл. Б-27, ГОСТ 25100).

ИГЭ-3. C упесь флювиогляциальная пластичная , иногда суглинок мягкопластичный, песчанистый, с прослойками и линзами песка пылеватого, влажного.

По лабораторным испытаниям супесь ИГЭ-3 характеризуется следующими средними значениями параметров физических свойств:

влажность на границе раскатывания W p -18,0%;

число пластичности I p -6,7%;

природная влажность W п -21,3%;

показатель текучести I L - 0,50;

плотность грунта r – 2,01 г/см 3 ;

коэффициент пористости е –0,62.

По степени морозоопасности супеси ИГЭ-3, залегающие в зоне сезонного промерзания, с учетом показателя текучести I L =0,50, являются среднепучинистые, с относительной деформацией пучения от 0,035 до 0,07 д.е. (табл. Б-27, ГОСТ 25100).

III . Комплекс озерно-ледниковых отложений (lgQ II ) имеет локальное распространение (в юго-восточной части площадки), залегает с глубины 3,5-4,7м под флювиогляциальными отложениями и представлен суглинисто-глинистыми отложениями, вскрытой мощностью до 0,8м.

ИГЭ-4. Суглинок (до глины) озерно-ледниковый, полутвердый , тяжелый, с включением гравия и гальки до 10%.

По лабораторным испытаниям суглинок ИГЭ-4 характеризуется следующими средними значениями параметров физических свойств:

влажность на границе раскатывания W p -19,7%;

число пластичности I p -16,7%;

природная влажность W п -22,1%;

показатель текучести I L - 0,15;

плотность грунта r – 1,98 г/см 3 ;

коэффициент пористости е –0,68.

Стр.11

По степени морозоопасности озерно-ледниковые суглинки ИГЭ-4 находятся вне зоны промерзания.

I V. Комплекс ледниковых отложений (морена времени отступления ледника московского возраста (g Q II ) имеет широкое распространение в пределах участка, представлен суглинистыми породами, иногда слабопесчанистыми, содержащие до 15% окатанного и неокатанного обломочного материала.

ИГЭ-5. Суглинок моренный полутвердый , песчанистый, с включением гравия, гальки, дресвы и щебня до 10-15 %, залегает с глубины 3,9-4,9м слоем вскрытой мощностью до 1,1м.

По лабораторным испытаниям суглинок ИГЭ-5 характеризуется следующими средними значениями параметров физических свойств:

влажность на границе раскатывания W p -16,1%;

число пластичности I p -13,3%;

природная влажность W п -17,4%;

показатель текучести I L - 0,10;

плотность грунта r – 2,09 г/см 3 ;

коэффициент пористости е –0,52.

По степени морозоопасности моренные суглинки ИГЭ-5 находятся вне зоны промерзания.

Основные показатели физических свойств грунтов сведены в таблицу 5.2.

Таблица 5.2. Показатели физических свойств грунтов

Стратиграфо-генетический комплекс

Наименование

инженерно-

геологического

элемента

Плотность грунта,

Плотность частиц грунта, г/см 3

Число пластичности

Показатель текучести

Коэффициент пористости

Степень влажности

Относительная деформация морозного пучения

r S

I P

I L

S r

ε fn

Суглинок

полутвердый

Суглинок

тугопластичный

Супесь пластичная

Суглинок (до глины)

полутвердый

Суглинок

полутвердый

Распространение выделенных инженерно-геологических элементов, условия их залегания на площадке проектируемого строительства внутриплощадочных трасс коммуникаций приведены на инженерно-геологических разрезах и колонках скважин (черт.№№ 3-13).

Стр.12

Физические характеристики грунтов, полученные по лабораторным исследованиям, их статистическая обработка (по ГОСТ 20522-96) приведены в приложении 3. Величины статистических критериев изменчивости показателей находятся в допустимых пределах.

По данным химических анализов грунты участка незасоленные, рН =6,8-7,4.

По степени агрессивности к бетонам марок W 4 , W 6 , W 8 и к железобетонным конструкциям (СНиП 2.03.11-85) грунты неагрессивные (прил.4).

Оценка коррозионной активности грунтов зоны аэрации по отношению к:

свинцовым оболочкам кабеля – высокая (по содержанию органики);

алюминиевым оболочкам кабеля – средняя (по хлор-иону);

углеродистой стали – средняя (по удельн. электрическому сопротивлению).

Нормативная глубина сезонного промерзания по СНиП 23-01-99 и «Пособию по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83*)» составляет: для суглинков – 132см, для супесей, песков мелких и пылеватых – 160см.

Нормативные и расчетные (при a=0,85 и a=0,95) значения основных физико-механических характеристик грунтов выделенных ИГЭ в соответствии с СНиП 2.02.01 -83*, СП 11-105-97 приведены в таблице 5.3. текста отчета «Рекомендуемые нормативные и расчетные значения характеристик физико-механических свойств грунтов».

Нормативные

Стр.14

6. ЗАКЛЮЧЕНИЕ

Инженерно-геологические изыскания на участке проектируемых внутриплощадочных линейных инженерных сетей для коттеджного поселка «Южные горки» (II очередь), расположенного по адресу: Московская область, Ленинский район, вблизи пос. Мещерино выполнены на стадии П с целью изучения инженерно-геологических условий.

В геоморфологическом отношении территория коттеджного поселка приурочена к пологоволнистой водно-ледниковой равнине. Поверхность площадки свободна от застройки и растительности, имеет небольшой уклон к юго-западу. Абсолютные отметки поверхности изменяются от 171,51 до 176,06м (по устьям выработок).

Современные физико-геологические процессы, способные негативно повлиять на строительство проектируемых внутриплощадочных линейных инженерных сетей, на исследованной территории коттеджного поселка в процессе изысканий не отмечены.

В геологическом строении исследованного участка проектируемых внутриплощадочных линейных инженерных сетей до разведанной глубины 5,0м участвуют четвертичные суглинисто-супесчаные отложения покровного (pQ III - IV), флювиогляциального (fQ II), озерно-ледникового (lgQ II) и моренного (gQ II) генезиса, перекрытые с поверхности почвенно-растительным слоем, мощность 0,1-0,3м.

Гидрогеологические условия участка проектируемого строительства характеризуются отсутствием подземных вод постоянного характера в пределах разведанных глубин (до 5м) на период изысканий (март 2010г.).

Однако, в период продолжительных ливневых дождей и активного весеннего снеготаяния, а также в случае нарушения поверхностного стока и утечек из проектируемых водонесущих коммуникаций возможно появление временных подземных вод типа «верховодки» в опесчаненных разностях флювиогляциальных отложений на глубинах 2,2-4,0м. Относительным водоупором для этих вод являются озерно-ледниковые и моренные суглинки.

В разведанной толще выделено четыре стратиграфо-генетических комплекса (СГК), содержащих в своем составе 5 инженерно-геологических элементов (ИГЭ), условия распространения и залегания которых показаны на инженерно-геологических разрезах и колонках скважин, а рекомендуемые нормативные и расчетные значения характеристик физико-механических свойств грунтов выделенных ИГЭ приведены в таблице 5.3. текста отчета «Рекомендуемые нормативные и расчетные значения характеристик физико-механических свойств грунтов».

Коррозионная активность грунтов зоны аэрации к свинцовым оболочкам кабелей – высокая; к алюминиевым оболочкам кабелей, а также к углеродистой стали – средняя. Грунты выделенных ИГЭ неагрессивны к бетонам всех марок по водонепроницаемости на любом цементе, а также неагрессивны к железобетонным конструкциям.

Нормативная глубина промерзания суглинков – 1,32м, супесей – 1,60м.

Стр.15

По степени морозного пучения грунты, залегающие в зоне сезонного промерзания – от слабо - до среднепучинистых.

По степени развития карстово-суффозионной опасности площадка работ относится к неопасной категории (МГСН 2.07-01).

По комплексу факторов инженерно-геологические условия исследованной площадки средней сложности (II кат. сложности по прил. Б СП 11-105-97, ч.I), и в целом, благоприятные для строительства проектируемых внутриплощадочных коммуникаций.

Исходя из инженерно-геологических условий участка проектируемого строительства, в проекте следует предусмотреть защиту стальных, алюминиевых и свинцовых конструкций от агрессивного воздействия грунтов.

Стр.16

СПИСОК ЛИТЕРАТУРЫ

Фондовая

    Технический отчет об инженерно-геологических изысканиях. Внутриплощадочные трассы коммуникаций для коттеджного поселка «Южные горки» по адресу: Московская область, Ленинский район, вблизи д. Коробово, ООО «Оргстройизыскания», инв. № ИГ-Т-09-11, 2009г.

    Технический отчет об инженерно-геологических изысканиях. Водозаборный узел для коттеджного поселка «Южные горки» вблизи д. Коробово, Ленинского района, Московской области, ООО «Оргстройизыскания», инв. № ИГ-Т-09-12, 2009г.

3. Пособие по проектированию оснований зданий и сооружений (СНиП 2.02.01-83), Москва, Стройиздат, 1986г.

4. МГСН 2.07-01.Московские городские строительные нормы. Основания, фундаменты и подземные сооружения. Москва, 2003г.

5. ТСН ИЗ-2005 МО. Территориальные строительные нормы. Организация производства инженерных изысканий для обеспечения безопасности обьектов градостроительства на территории Московской области.

6. Порядок выполнения инженерных изысканий для подготовки проектной документации, строительства, реконструкции, капитального ремонта объектов капитального строительства на территории Московской области. (Министерство строительного комплекса МО, 2009г.)

7. Инструкция по инженерно-геологическим и геоэкологическим изысканиям в г. Москве от 11.03.04г,Москомархитектура, М., 2004г.

Строительные нормы и правила

СНиП 11-02-96 – «Инженерные изыскания для строительства. Основные положения».

СП 11-105-97 «Инженерно-геологические изыскания для строительства».

СП 11-104-97 «Инженерно-геодезические изыскания для строительства».

СП 11-102-97 «Инженерно-экологические изыскания для строительства».

СП 50-101-2004 «Проектирование и устройство оснований и фундаментов зданий и сооружений ».

СНиП 2.02.01 -83* «Основания зданий и сооружений»

СНиП 2.03.11-85 «Защита строительных конструкций от коррозии».

СНиП 2.06.15-85 «Инженерная защита территорий от затопления и подтопления».

СНиП 3.02.01-87 «Земляные сооружения, основания и фундаменты».

СНиП 23-01-99 «Строительная климатология»

СНиП 22-02-2003 «Инженерная защита территорий, зданий и сооружений от опасных геологических процессов».

Стр.17

Государственные стандарты

ГОСТ 25100-95 «Грунты. Классификация».

ГОСТ 12071-2000 «Грунты. Отбор, упаковка, транспортирование, хранение образцов».

ГОСТ 5180-84 «Грунты. Методы лабораторного определения физических характеристик».

ГОСТ 12536-79 «Грунты. Методы лабораторного определения гранулометрического состава».

ГОСТ 12248-96 «Грунты. Методы лабораторного определения характеристик прочности и деформируемости».

ГОСТ 20522-96 «Грунты. Методы статистической обработки результатов испытаний».

ГОСТ 9.602-2005 «Сооружения подземные. Общие требования к защите от коррозии».

ГОСТ 4979-94 «Воды подземные. Хозяйственно-питьевого и промышленного водоснабжения. Методы химического анализа».

ГОСТ 21.302-96 «Условные графические обозначения в документации по инженерно-геологическим изысканиям».

ГОСТ 21.101-97 «Основные требования к проектной и рабочей документации».

введениеПояснительная записка

Экологическая стратегия ОАО «АК «Транснефть» (пояснительная записка ) 1. Введение В соответствии с утвержденной «Экологической политикой ОАО « ... запланирована в размере 5000,0 тыс. руб. - с введением в эксплуатацию в Альметьевском РНУ 117 км...

Глинистые грунтыявляются одним из наиболее распространенных типов горных пород. В состав глинистых грунтов входят очень мелкие глинистые частицы, размер которых меньше 0,01 мм и песчаные частицы. Глинистые частицыимеют форму пластин или чешуек.Глинистые грунты имеют большое количество пор.Отношение объема пор к объему грунта называется пористостью и может колебаться от 0,5 до 1,1. Пористость характеризует степень уплотнения грунта.Глинистый грунт очень хорошо поглощает и удерживает воду, которая при замерзании превращается в лед и увеличивается в объеме, увеличивая объем всего грунта. Это явление называется пучением. Чем больше в грунтах содержится глинистых частиц, тем сильнее они подвержены пучению.

Глинистые грунты обладают свойством связанности, которое выражается в способности грунта сохранять форму благодаря наличию глинистых частиц. В зависимости от содержанияглинистых частиц грунтыклассифицируют на глину, суглинки и супеси.

Способность грунта деформироваться под действием внешних нагрузок без разрываи сохранять форму после прекращения нагрузки называется пластичностью.

Число пластичности Ip — разность влажностей, соответствующая двум состояниям грунта: на границе текучести WL и на границе раскатывания W p , W L и W p определяют по ГОСТ 5180.

Таблица 1. Классификация глинистых грунтов по содержанию глинистых частиц.

Грунт

частиц по массе,

%

Число пластичности

Ip

Суглинок

Число пластичности глинистых грунтов определяет их строительные свойства: плотность, влажность, сопротивление сжатию. С уменьшением влажности плотность возрастает и сопротивление сжатию увеличивается. С увеличением влажности плотность уменьшается и сопротивление сжатию также уменьшается.

Супесь.

Супесь содержит не более 10 % глинистых частиц, остальной объем этого грунта составляют песчаные частицы. Супесь практически не отличается от песка. Супесь бывает двух видов: тяжелая и легкая. Тяжелая супесь содержит от 6 до 10% глиняных частиц, в легкой содержание глинистых частиц от 3 до 6%.. При растирании супеси на влажной ладони можно увидеть частицы песка, после стряхивания грунта на ладони видны следы от глинистых частиц. Комки супеси в сухом состоянии легко рассыпаются и крошатся от удара. Супесь почти не скатываются в жгут. Шар, скатанный из увлажненного грунта, при легком давлении рассыпается.

Из-за высокого содержания песка супесь имеет сравнительно низкую пористость – от 0,5 до 0,7 (пористость — отношение объема пор к объему грунта), поэтому она может содержать меньше влаги и, следовательно, быть меньше подвержена пучению. Чем меньше пористость сухой супеси, тем больше ее несущая способность: при пористости 0,5 равна 3 кг/см 2 , при пористости 0,7 – 2,5 кг/см 2 . Несущая способность супеси не зависит от влажности, поэтому этот грунт можно считать непучинистым.

Суглинок.

Грунт, в котором содержание глинистых частиц достигает 30% от веса, называют суглинком. В суглинке, как и в супеси содержание песчаных частиц больше, чем глинистых. Суглинок обладает большей связанностью, чем супесь и может сохраняться в крупных кусках, не распадаясь на мелкие. Суглинки бывают тяжелыми (20% -30% глинистых частиц) и легкими (10% — 20% глинистых частиц).

Куски грунта в сухом состоянии менее тверды, чем глина. При ударе рассыпаются на мелкие куски. Во влажном состоянии мало пластичны. При растирании чувствуются песчаные частицы, комки раздавливаются легче, присутствуют более крупные песчинки на фоне более мелкого песка. Жгут, раскатанный из сырого грунта, получается коротким. Шар, скатанный из увлажненного грунта, при нажатии образует лепешку с трещинами по краям.

Пористость суглинка выше, чем супеси и колеблется от 0,5 до 1. Суглинок может содержать больше воды и, следовательно, больше, чем супесь, подвержен пучению.

Суглинки отличаются достаточно высокой прочностью, хотя подвержены к небольшой просадке и образованию трещин. Несущая способность суглинка – 3 кг/см 2 , в увлажненном – 2,5 кг/см 2 . Суглинки в сухом состоянии являются непучинистыми грунтами, При увлажнении глинистые частицы впитывают воду, которая в зимнее время превращается в лед, увеличиваясь в объеме, что приводит к пучению грунта.

Глина.

В состав глины входят больше 30% глинистых частиц. Глина имеет большую связанность. Глина в сухом состоянии — твердая, во влажном — пластичная, вязкая, прилипает к пальцам. При растирании пальцами песчаных частиц не чувствуется, раздавить комки очень трудно. Если кусок сырой глины разрезать ножом, то срез имеет гладкую поверхность, на которой не видно песчинок. При сдавливании шарика, скатанного из сырой глины, получается лепёшка, края которой не имеют трещин.

Пористость глины может достигать 1,1, она сильнее всех остальных грунтов подвержена морозному пучению. Глина в сухом состоянии имеет несущую способность 6 кг/см 2 , Глина, насыщенная водой, зимой может увеличиваться в объеме на 15%, теряя несущую способность до 3 кг/см 2 . При насыщении водой глина может перейти из твердого состояния в текучее.

В таблице 2 приведены способы, с помощью которых можно визуально определить вид и характеристики глинистых грунтов.

Таблица 2. Определение механического состава глинистых грунтов.

Наименование грунта

Вид в лупу

Пластичность

Однородный тонкий порошок, частиц песка почти нет

Раскатывается в жгут и

свертывается в кольцо

Суглинок

Преобладает песок, частиц

глины 20 – 30%

При раскатывании получается

жгут, при свертывании

в кольцо распадается на части

Преобладают частицы песка с небольшой примесью частиц глины

При попытке раскатывания

жгут распадается на мелкие

Классификация глинистых грунтов.

Большинство глинистых грунтов в природных условиях в зависимости от содержания в них воды могут находиться в различном состоянии. Строительный стандарт (ГОСТ 25100-95 Классификация грунтов) определяет классификацию глинистых грунтов в зависимости от их плотности и влажности. Состояние глинистых грунтов характеризует показатель текучести IL — отношение разности влажностей, соответствующих двум состояниям грунта: естественному W и на границе раскатывания Wp , к числу пластичности Ip. В таблице 3 приведена классификация глинистых грунтов по показателю текучести.

Таблица 3. Классификация глинистых грунтов по показателю текучести.

Разновидность глинистого грунта

Показатель текучести

Супеси:

пластичные

Суглинки и глины:

полутвердые

тугопластичные

мягкопластичные

текучепластичные

По гранулометрическому составу и числу пластичности Ip глинистые группы подразделяют согласно таблице 4.

Таблица 4. Классификация глинистых грунтов по гранулометрическому составу и числу пластичности

Число пластичности

частиц (2-0,5мм), % по массе

Супесь:

песчанистая

пылеватая

Суглинок:

легкий песчанистый

легкий пылеватый

тяжелый песчанистый

тяжелый пылеватый

Глина:

легкая песчанистая

легкая пылеватая

Не регламентируется

По наличию твердых включений глинистые грунты подразделяют согласно таблице 5.

Таблица 5. Содержание твердых частиц в глинистых грунтах .

Разновидность глинистых грунтов

Супесь, суглинок, глина с галькой (щебнем)

Супесь, суглинок, глина галечниковые (щебенистые) или гравелистые (дресвяные)

Среди глинистых грунтов должны быть выделены:

Грунт заторфованный;

Просадочные грунты;

Набухающие (пучинистые) грунты.

Грунт заторфованный – песок и глинистый грунт, содержащий в своем составе в сухой навеске от 10 до 50 % (по массе) торфа.

По относительному содержанию органического вещества Ir глинистые грунты и пески подразделяют согласно таблице 6.

Таблица 6.Классификация глинистых грунтов по содержанию органических веществ

Разновидность грунтов

Относительное содержание органического вещества Ir, д. е.

Сильнозаторфованный

Среднезаторфованный

Слабозаторфованный

С примесью органических веществ

Грунт набухающий — грунт, который при замачивании водой или другой жидкостью увеличивается в объеме и имеет относительную деформацию набухания (в условиях свободного набухания) больше 0,04.

Грунт просадочный — грунт, который под действием внешней нагрузки и собственного веса или только от собственного веса при замачивании водой или другой жидкостью претерпевает вертикальную деформацию (просадку) и имеет относительную деформацию просадки e sl ³ 0,01.

В зависимости от просадки и собственного веса при замачивании просадочные грунты подразделяются на два типа:

  • тип 1 - когда просадка грунта от собственного веса не превышает 5 см;
  • тип 2 - когда просадка грунта от собственного веса более 5 см.

По относительной деформации просадочности e sl глинистые грунты подразделяют согласно таблице 7.

Таблица 7. Относительная деформация просадочности глинистых грунтов.

Разновидность глинистых грунтов

Относительная деформация просадочности e sl, д. е.

Непросадочный

Просадочный

Грунт пучинистый — дисперсный грунт, который при переходе из талого в мерзлое состояние увеличивается в объеме вследствие образования кристаллов льда и имеет относительную деформацию морозного пучения e fn ³ 0,01. Эти грунты не пригодны для строительства, их необходимо удалить и заменить грунтом с хорошей несущей способностью

По относительной деформации набухания без нагрузки e sw глинистые грунты подразделяют согласно таблице 8.

Таблица 8. Относительная деформация набухания глинистых грунтов.

Разновидность глинистых грунтов

Относительная деформация набухания без нагрузки e sw, д. е.

Ненабухающий

Слабонабухающий

Средненабухающий

Сильнонабухающий

По этому показателю грунты подразделяются на пески, супеси, лёгкие, средние и тяжелые суглинки, а также на лёгкие, средние и тяжёлые глины.

Из этой статьи вы узнаете:
- Почему нельзя определять состав почвы по ее цвету;
- Как в домашних условиях определить количество глинистых частиц по мокрому методу;
- Как провести сухой тест для суглинков и супеси.

Почему нельзя определить состав почвы по ее цвету

Песок, супесь, суглинок, глина – некоторые садоводы ошибочно судят о механическом составе почвы по ее цвету. При такой оценке они часто неправильно определяют количество глинистых частиц, думая на суглинок, что это супесь, а суглинок принимая за глину.

Цвет земли на участке и ее оттенки зависят не только от содержания глины, но и от её минералогического состава. Дело в том, что на цвет земли, кроме гумуса, влияет ее склонность содержать в себе соединения алюминия, иногда - железа и марганца. В условиях переувлажнения образуется глеевый горизонт с сизой окраской, обусловленной содержанием алюмоферросиликатов, появляющихся при взаимодействии железа с глинистыми минералами. Железо с марганцем образуют закисные соединения (ядовитые для растений), придающие ржаво-охристую окраску.

Часто повторяя цвет суглинка, супесь не является идеальным грунтом, и требует проведения Поэтому механический состав почвы необходимо определять по степени её связности.

Как определить, суглинок или глина у вас на участке

Для полевых условий существует старая методика, не требующая никаких инструментов и доступная всем. По этому методу, называемому «мокрым», образец почвы увлажняют (если вода далеко, то можно и слюнями) и перемешивают до тестообразного состояния. Из подготовленной земли на ладони скатывают шарик и пробуют раскатать его в шнур (специалисты иногда просторечно называют его колбаской) толщиной около 3 мм или чуть больше, затем свернуть в кольцо диаметром 2-3 см.

Результат теста

Не образует ни шарика, ни шнура.

Образует шарик, который раскатать в шнур (колбаску) не удаётся. Получаются только его зачатки.

Образует шнур, который можно свернуть в кольцо, но оно получается очень непрочное и легко распадается на части при скатывании с ладони или при попытке взять его в руки.

Лёгкий суглинок.

Образует сплошной шнур, который можно свернуть в кольцо, но оно получается с трещинами и переломами.

Средний суглинок.

Легко раскатывается в шнур. Кольцо получается с трещинами.

Тяжёлый суглинок.

Можно скатать в длинный тонкий глиняный шнур, из которого получается кольцо высокой пластичности без трещин.

Иногда в своем желании как можно точнее определить грунт на участке, садоводы перелистывают десятки старых томов геологических справочников в поисках ответов на вопросы, что старше, суглинок или глина, или какое древнее море виновато в том, что садоводство под Москвой стоит на песчаном грунте. Но для того, чтобы повысить урожайность почвы, старого доброго «мокрого метода» определенно достаточно. Единственное: необходимо быть внимательными при определении супесей и суглинков, так как они могут быть пылеватыми.

Суглинок или супесь. Сухой метод для пылеватых грунтов

Эти разновидности различают по сухому методу следующим образом. Пылеватые супеси и лёгкие пылеватые суглинки образуют непрочные комочки, которые при раздавливании пальцами легко распадаются. При растирании супеси производят шуршащий звук и ссыпаются с руки. При растирании пальцами лёгких суглинков ощущается ясно различимая шероховатость, глинистые частицы втираются в кожу. Средние пылеватые суглинки дают ощущение мучнистости, но несут ощущение тонкой муки со слабозаметной шероховатостью. Их комки раздавливаются с некоторым усилием. Тяжелые пылеватые суглинки в сухом состоянии с трудом поддаются раздавливанию, дают ощущение тонкой муки при растирании. Шероховатость не ощущается.

Теперь, получив результаты теста, вы сможете сравнительно точно определить, когда и сколько чего вносить, можете, так сказать «суглить» свою глину. Органические удобрения, в первую очередь , для малотребовательных к органике культур на сравнительно лёгких суглинистых почвах надо вносить меньшими объемами (примерно по 4 кг/м2), но чаще и наоборот, свойства тяжёлых грунтов позволяют вносить навоз реже, но в более высоких количествах (до 8 кг/м2). Механический состав земли на участке надо иметь в виду и , регулируя глубину их заделки.

Александр Жаравин, агроном,
г. Киров
По материалам Флора Price

Таблица классификации грунтов по группам

От надежности функционирования системы «основание-фундамент-сооружение» зависит и срок эксплуатации здания, и уровень «качества жизни» его жильцов. Причем, надежность указанной системы базируется именно на характеристиках грунта, ведь любая конструкция должна опираться на надежное основание.

Именно поэтому, успех большинства начинаний строительных компаний зависит от грамотного выбора месторасположения строительной площадки. И такой выбор, в свою очередь, невозможен без понимания тех принципов, на которых основывается классификация грунтов.

С точки зрения строительных технологий существуют четыре основных класса, к которым принадлежат:

Скальные грунты, структура которых однородна и основана на жестких связях кристаллического типа;
- дисперсные грунты, состоящие из несвязанных между собой минеральных частиц;
- природные, мерзлые грунты, структура которых образовалась естественным путем, под действием низких температур;
- техногенные грунты, структура которых образовалась искусственным путем, в результате деятельности человека.


Впрочем, подобная классификация грунтов имеет несколько упрощенный характер и показывает только на степень однородности основания. Исходя из этого, любой скальный грунт представляет собой монолитное основание, состоящее из плотных пород. В свою очередь, любой нескальный грунт основан на смеси минеральных и органических частиц с водой и воздухом.

Разумеется, в строительном деле пользы от такой классификации немного. Поэтому, каждый тип основания разделяют на несколько классов, групп, типов и разновидностей. Подобная классификация грунтов по группам и разновидностям позволяет без труда сориентироваться в предполагаемых характеристиках будущего основания и дает возможность использовать эти знания в процессе строительства дома.

Например, принадлежность к той или иной группе в классификации грунтов определяется характером структурных связей, влияющих на прочностные характеристики основания. А конкретный тип грунта указывает на вещественный состав почвы. Причем, каждая классификационная разновидность указывает на конкретное соотношение компонентов вещественного состава.

Таким образом, глубокая классификация грунтов по группам и разновидностям дает вполне персонифицированное представление обо всех преимущества и недостатки будущей строительной площадки.

Например, в наиболее распространенном на территории европейской части России классе дисперсных грунтов имеется всего две группы, разделяющие эту классификацию на связанные и несвязанные почвы. Кроме того, в отдельную подгруппу дисперсного класса выделены особые, илистые грунты.

Такая классификация грунтов означает, что среди дисперсных грунтов имеются группы, как с ярко выраженными связями в структуре, так и с отсутствием таковых связей. К первой группе связанных дисперсных грунтов относятся глинистые, илистые и заторфованные виды почвы. Дальнейшая классификация дисперсных грунтов позволяет выделить группу с несвязной структурой – пески и крупнообломочные грунты.

В практическом плане подобная классификация грунтов по группам позволяет получить представление о физических характеристиках почвы «без оглядки» на конкретный вид грунта. У дисперсных связных грунтов практически совпадают такие характеристики, как естественная влажность (колеблется в пределах 20%), насыпная плотность (около 1,5 тонн на кубометр), коэффициент разрыхления (от 1,2 до 1,3), размер частиц (около 0,005 миллиметра) и даже число пластичности.

Аналогичные совпадения характерны и для дисперсных несвязных грунтов. То есть, имея представление о свойствах одного вида грунта, мы получаем сведения о характеристиках всех видов почвы из конкретной группы, что позволяет внедрять в процесс проектирования усредненные схемы, облегчающие прочностные расчеты.

Кроме того, помимо вышеприведенных схем, существует и особая классификация грунтов по трудности разработки. В основе этой классификации лежит уровень «сопротивляемости» грунта механическому воздействию со стороны землеройной техники.

Причем, классификация грунтов по трудности разработки зависит от конкретного вида техники и разделяет все типы грунтов на 7 основных групп, к которым принадлежат дисперсные, связанные и несвязанные грунты (группы 1-5) и скальные грунты (группы 6-7).

Песок, суглинок и глинистые грунты (принадлежат к 1-4 группе) разрабатывают обычными экскаваторами и бульдозерами. А вот остальные участники классификации требуют более решительного подхода, основанного на механическом рыхлении или взрывных работах. В итоге, можно сказать, что классификация грунтов по трудности разработки зависит от таких характеристик, как сцепление, разрыхляемость и плотность грунта.

ГЕНЕТИЧЕСКИЕ ТИПЫ ГРУНТОВ ЧЕТВЕРТИЧНОГО ВОЗРАСТА

Типы грунтов Обозначение
Аллювиальные (речные отложения) a
Озерные l
Озерно-аллювиальные
Делювиальные (отложения дождевых и талых вод на склонах и у подножия возвышенностей) d
Аллювиально-делювиальные ad
Эоловые (осаждения из воздуха): эоловые пески, лессовые грунты L
Гляциальные (ледниковые отложения) g
Флювиогляциальные (отложении ледниковых потоков) f
Озерно-ледниковые lg
Элювиальные (продукты выветривания горных пород, оставшиеся на месте образования) е
Элювиально-делювиальное ed
Пролювиальные (отложения бурных дождевых потоков в горных областях) p
Аллювиально-пролювиальные ap
Морские m

РАСЧЕТНЫЕ ФОРМУЛЫ ОСНОВНЫХ ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ГРУНТОВ

ПЛОТНОСТЬ ЧАСТИЦ ρ s ПЕСЧАНЫХ И ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ

КЛАССИФИКАЦИЯ СКАЛЬНЫХ ГРУНТОВ

Грунт Показатель
По пределу прочности на одноосное сжатие в водонасыщенном состоянии, МПа
Очень прочный R c > 120
Прочный 120 ≥ R c > 50
Средней прочности 50 ≥ R c > 15
Малопрочный 15 ≥ R c > 5
Пониженной прочности 5 ≥ R c > 3
Низкой прочности 3 ≥ R c ≥ 1
Весьма низкой прочности R c < 1
По коэффициенту размягчаемости в воде
Неразмягчаемый K saf ≥ 0,75
Размягчаемый K saf < 0,75
По степени растворимости в воде (осадочные сцементированные), г/л
Нерастворимый Растворимость менее 0,01
Труднорастворимый Растворимость 0,01—1
Среднерастворимый − || − 1—10
Легкорастворимый − || − более 10

КЛАССИФИКАЦИЯ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО ГРАНУЛОМЕТРИЧЕСКОМУ СОСТАВУ

ПОДРАЗДЕЛЕНИЕ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО СТЕПЕНИ ВЛАЖНОСТИ S r

ПОДРАЗДЕЛЕНИЕ ПЕСЧАНЫХ ГРУНТОВ ПО ПЛОТНОСТИ СЛОЖЕНИЯ

Песок Подразделение по плотности сложения
плотный средней плотности рыхлый
По коэффициенту пористости
Гравелистый, крупный и средней крупности e < 0,55 0,55 ≤ e ≤ 0,7 e > 0,7
Мелкий e < 0,6 0,6 ≤ e ≤ 0,75 e > 0,75
Пылеватый e < 0,6 0,6 ≤ e ≤ 0,8 e > 0,8
По удельному сопротивлению грунта, МПа, под наконечником (конусом) зонда при статическом зондировании
q c > 15 15 ≥ q c ≥ 5 q c < 5
Мелкий независимо от влажности q c > 12 12 ≥ q c ≥ 4 q c < 4
Пылеватый:
маловлажный и влажный
водонасыщенный

q c > 10
q c > 7

10 ≥ q c ≥ 3
7 ≥ q c ≥ 2

q c < 3
q c < 2
По условному динамическому сопротивлению грунта МПа, погружению зонда при динамическом зондировании
Крупный и средней крупности независимо от влажности q d > 12,5 12,5 ≥ q d ≥ 3,5 q d < 3,5
Мелкий:
маловлажный и влажный
водонасыщенный

q d > 11
q d > 8,5

11 ≥ q d ≥ 3
8,5 ≥ q d ≥ 2

q d < 3
q d < 2
Пылеватый маловлажный и влажный q d > 8,8 8,5 ≥ q d ≥ 2 q d < 2

ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ЧИСЛУ ПЛАСТИЧНОСТИ

ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ПОКАЗАТЕЛЮ ТЕКУЧЕСТИ

ПОДРАЗДЕЛЕНИЕ ИЛОВ ПО КОЭФФИЦИЕНТУ ПОРИСТОСТИ

ПОДРАЗДЕЛЕНИЕ САПРОПЕЛЕЙ ПО ОТНОСИТЕЛЬНОМУ СОДЕРЖАНИЮ ОРГАНИЧЕСКОГО ВЕЩЕСТВА

НОРМАТИВНЫЕ ЗНАЧЕНИЯ МОДУЛЕЙ ДЕФОРМАЦИИ Е ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ

Возраст и происхождение грунтов Грунт Показатель текучести Значения Е , МПа, при коэффициенте пористости е
0,35 0,45 0,55 0,65 0,75 0,85 0,95 1,05 1,2 1,4 1,6
Четвертичные отложения: иллювиальные, делювиальные, озерно-аллювиальные Супесь 0 ≤ I L ≤ 0,75 - 32 24 16 10 7 - - - - -
Суглинок 0 ≤ I L ≤ 0,25 - 34 27 22 17 14 11 - - - -
0,25 < I L ≤ 0,5 - 32 25 19 14 11 8 - - - -
0,5 < I L ≤ 0,75 - - - 17 12 8 6 5 - - -
Глина 0 ≤ I L ≤ 0,25 - - 28 24 21 18 15 12 - - -
0,25 < I L ≤ 0,5 - - - 21 18 15 12 9 - - -
0,5 < I L ≤ 0,75 - - - - 15 12 9 7 - - -
флювиогляциальные Супесь 0 ≤ I L ≤ 0,75 - 33 24 17 11 7 - - - - -
Суглинок 0 ≤ I L ≤ 0,25 - 40 33 27 21 - - - - - -
0,25<I L ≤0,5 - 35 28 22 17 14 - - - - -
0,5 < I L ≤ 0,75 - - - 17 13 10 7 - - - -
моренные Супесь и суглинок I L ≤ 0,5 75 55 45 - - - - - - - -
Юрские отложения оксфордского яруса Глина − 0,25 ≤ I L ≤ 0 - - - - - - 27 25 22 - -
0 < I L ≤ 0,25 - - - - - - 24 22 19 15 -
0,25 < I L ≤ 0,5 - - - - - - - - 16 12 10

Определение модуля деформации в полевых условиях

Модуль деформации определяют испытанием грунта статической нагрузкой, передаваемой на штамп. Испытания проводят в шурфах жестким круглым штампом площадью 5000 см 2 , а ниже уровня грунтовых вод и на больших глубинах — в скважинах штампом площадью 600 см 2 .


Зависимость осадки штампа s от давления р

1 — резиновая камера; 2 — скважина; 3 — шланг; 4 — баллон сжатого воздуха: 5 — измерительное устройство

Зависимость деформаций стенок скважины Δr от давления р

Для определения модуля деформации используют график зависимости осадки от давления, на котором выделяют линейный участок, проводят через него осредняющую прямую и вычисляют модуль деформации Е в соответствии с теорией линейно-деформируемой среды по формуле

E = (1 − ν 2)ωd Δp / Δs

Где v — коэффициент Пуассона (коэффициент поперечной деформации), равный 0,27 для крупнообломочных грунтов, 0,30 для песков и супесей, 0,35 для суглинков и 0,42 для глин; ω — безразмерный коэффициент, равный 0,79; d р — приращение давления на штамп; Δs — приращение осадки штампа, соответствующее Δр .

При испытании грунтов необходимо, чтобы толщина слоя однородного грунта под штампом была не менее двух диаметров штампа.

Модули деформации изотропных грунтов можно определять в скважинах с помощью прессиометра. В результате испытаний получают график зависимости приращения радиуса скважины от давления на ее стенки. Модуль деформации определяют на участке линейной зависимости деформации от давления между точкой р 1 , соответствующей обжатию неровностей стенок скважины, и точкой р 2 E = kr 0 Δp / Δr

Где k — коэффициент; r 0 — начальный радиус скважины; Δр — приращение давления; Δr — приращение радиуса, соответствующее Δр .


Коэффициент k определяется, как правило, путем сопоставления данных прессиометрии с результатами параллельно проводимых испытаний того же грунта штампом. Для сооружений II и III класса допускается принимать в зависимости от глубины испытания h следующие значения коэффициентов k в формуле: при h < 5 м k = 3; при 5 м ≤ h ≤ 10 м k h ≤ 20 м k = 1,5.


Для песчаных и пылевато-глинистых грунтов допускается определять модуль деформации на основе результатов статического и динамического зондирования грунтов. В качестве показателей зондирования принимают: при статическом зондировании — сопротивление грунта погружению конуса зонда q c , а при динамическом зондирований — условное динамическое сопротивление грунта погружению конуса q d . Для суглинков и глин E = 7q c и E = 6q d ; для песчаных грунтов E = 3q c , а значения Е по данным динамического зондирования приведены в таблице. Для сооружений I и II класса является обязательным сопоставление данных зондирования с результатами испытаний тех же грунтов штампами.

ЗНАЧЕНИЯ МОДУЛЕЙ ДЕФОРМАЦИИ Е ПЕСЧАНЫХ ГРУНТОВ ПО ДАННЫМ ДИНАМИЧЕСКОГО ЗОНДИРОВАНИЯ

Для сооружений III класса допускается определять Е только по результатам зондирования.


Определение модуля деформации в лабораторных условиях

В лабораторных условиях применяют компрессионные приборы (одометры), в которых образец грунта сжимается без возможности бокового расширения. Модуль деформации вычисляют на выбранном интервале давлений Δр = p 2 − p 1 графика испытаний (рис. 1.4) по формуле

E oed = (1 + e 0)β / a
где e 0 — начальный коэффициент пористости грунта; β — коэффициент, учитывающий отсутствие поперечного расширения грунта в приборе и назначаемый в зависимости от коэффициента Пуассона v ; а — коэффициент уплотнения;
a = (e 1 − e 2)/(p 2 − p 1)

СРЕДНИЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ПУАССОНА v β

КОЭФФИЦИЕНТЫ m ДЛЯ АЛЛЮВИАЛЬНЫХ, ДЕЛЮВИАЛЬНЫХ, ОЗЕРНЫХ И ОЗЕРНО-АЛЛЮВИАЛЬНЫХ ЧЕТВЕРТИЧНЫХ ГРУНТОВ ПРИ ПОКАЗАТЕЛЕ ТЕКУЧЕСТИ I L ≤ 0,75

НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИИ c φ , град, ПЕСЧАНЫХ ГРУНТОВ

Песок Характеристика Значения с и φ при коэффициенте пористости e
0,45 0,55 0,65 0,75
Гравелистый и крупный с
φ
2
43
1
40
0
38
-
-
Средней крупности с
φ
3
40
2
38
1
35
-
-
Мелкий с
φ
6
38
4
36
2
32
0
28
Пылеватый с
φ
8
36
6
34
4
30
2
26

НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИЯ c , кПа, И УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ , град, ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ЧЕТВЕРТИЧНЫХ ОТЛОЖЕНИЙ

Грунт Показатель текучести Характеристика Значения с и φ при коэффициенте пористости е
0,45 0,55 0,65 0,75 0,85 0,95 1,05
Супесь 0<I L ≤0,25 с
φ
21
30
17
29
15
27
13
24
-
-
-
-
-
-
0,25<I L ≤0,75 с
φ
19
28
15
26
13
24
11
21
9
18
-
-
-
-
Суглинок 0<I L ≤0,25 с
φ
47
26
37
25
31
24
25
23
22
22
19
20
-
-
0,25<I L ≤0,5 с
φ
39
24
34
23
28
22
23
21
18
19
15
17
-
-
0,5<I L ≤0,75 с
φ
-
-
-
-
25
19
20
18
16
16
14
14
12
12
Глина 0<I L ≤0,25 с
φ
-
-
81
21
68
20
54
19
47
18
41
16
36
14
0,25<I L ≤0,5 с
φ
-
-
-
-
57
18
50
17
43
16
37
14
32
11
0,5<I L ≤0,75 с
φ
-
-
-
-
45
15
41
14
36
12
33
10
29
7

ЗНАЧЕНИЯ УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ ПЕСЧАНЫХ ГРУНТОВ ПО ДАННЫМ ДИНАМИЧЕСКОГО ЗОНДИРОВАНИЯ

ОРИЕНТИРОВОЧНЫЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ФИЛЬТРАЦИИ ГРУНТОВ

ЗНАЧЕНИЯ СТАТИСТИЧЕСКОГО КРИТЕРИЯ

Число
определений
v Число
определений
v Число
определений
v
6 2,07 13 2,56 20 2,78
7 2,18 14 2,60 25 2,88
8 2,27 15 2,64 30 2,96
9 2,35 16 2,67 35 3,02
10 2,41 17 2,70 40 3,07
11 2,47 18 2,73 45 3,12
12 2,52 19 2,75 50 3,16

ТАБЛИЦА 1.22. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА t α ПРИ ОДНОСТОРОННЕЙ ДОВЕРИТЕЛЬНОЙ ВЕРОЯТНОСТИ α

Число
определений
n −1 или n −2
t α при α Число
определений
n −1 или n −2
t α при α
0,85 0,95 0,85 0,95
2 1,34 2,92 13 1,08 1,77
3 1,26 2,35 14 1,08 1,76
4 1,19 2,13 15 1,07 1,75
5 1,16 2,01 16 1,07 1,76
6 1,13 1,94 17 1,07 1,74
7 1,12 1,90 18 1,07 1,73
8 1,11 1,86 19 1,07 1,73
9 1,10 1,83 20 1,06 1,72
10 1,10 1,81 30 1,05 1,70
11 1,09 1,80 40 1,06 1,68
12 1,08 1,78 60 1,05 1,67