Статическое электричество — что такое, причины возникновения. Статическое электричество и защита от него Чем отличается статическое электричество от электричества

Что такое статическое электричество

Статическое электричество возникает в случае нарушения внутриатомного или внутримолекулярного равновесия вследствие приобретения или потери электрона. Обычно атом находится в равновесном состоянии благодаря одинаковому числу положительных и отрицательных частиц - протонов и электронов. Электроны могут легко перемещаются от одного атома к другому. При этом они формируют положительные (где отсутствует электрон) или отрицательные (одиночный электрон или атом с дополнительным электроном) ионы. Когда происходит такой дисбаланс, возникает статическое электричество.

Электрический заряд электрона - (-) 1,6 х 10 -19 кулон. Протон с таким же по величине зарядом имеет положительную полярность. Статический заряд в кулонах прямо пропорционален избытку или дефициту электронов, т.е. числу неустойчивых ионов.

Кулон – это основная единица статического заряда, определяющая количество электричества, проходящее через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер.

У положительного иона отсутствует один электрон, следовательно, он может легко принимать электрон от отрицательно заряженной частицы. Отрицательный ион в свою очередь может быть либо одиночным электроном, либо атомом/молекулой с большим числом электронов. В обоих случаях существует электрон, способный нейтрализовать положительный заряд.

Как генерируется статическое электричество

Основные причины появления статического электричества:

  • Контакт между двумя материалами и их отделение друг от друга (включая трение, намотку/размотку и пр.).
  • Быстрый температурный перепад (например, в момент помещения материала в духовой шкаф).
  • Радиация с высокими значениями энергии, ультрафиолетовое излучение, рентгеновские X-лучи, сильные электрические поля (нерядовые для промышленных производств).
  • Резательные операции (например, на раскроечных станках или бумагорезальных машинах).
  • Наведение (вызванное статическим зарядом возникновение электрического поля).

Поверхностный контакт и разделение материалов, возможно, являются наиболее распространенными причинами возникновения статического электричества на производствах, связанных с обработкой рулонных пленок и листовых пластиков. Статический заряд генерируется в процессе разматывания/наматывания материалов или перемещения друг относительно друга различных слоев материалов.

Этот процесс не вполне понятен, но наиболее правдивое объяснение появления статического электричества в данном случае может быть получено проведением аналогии с плоским конденсатором, в котором механическая энергия при разделении пластин преобразуется в электрическую:

Результирующее напряжение = начальное напряжение х (конечное расстояние между пластинами/начальное расстояние между пластинами).

Когда синтетическая пленка касается подающего/приемного вала, невысокий заряд, перетекающий от материала к валу, провоцирует дисбаланс. По мере того, как материал преодолевает зону контакта с валом, напряжение возрастает точно также как в случае с конденсаторными пластинами в момент их разделения.

Практика показывает, что амплитуда результирующего напряжения ограничена вследствие электрического пробоя, возникающего в промежутке между соседними материалами, поверхностной проводимости и других факторов. На выходе пленки из контактной зоны часто можно слышать слабое потрескивание или наблюдать искрение. Это происходит в момент, когда статический заряд достигает величины, достаточной для пробоя окружающего воздуха.

До контакта с валом синтетическая пленка с точки зрения электричества нейтральна, но в процессе перемещения и контакта с подающими поверхностями поток электронов направляется на пленку и заряжает ее отрицательным зарядом. Если вал металлический и заземленный его положительный заряд быстро стекает.

Большая часть оборудования имеет много валов, поэтому величина заряда и его полярность могут часто меняться. Наилучший способ контроля статического заряда – это его точное определение на участке непосредственно перед проблемной зоной. Если заряд нейтрализован слишком рано, он может восстановиться до того, как пленка достигнет этой проблемной зоны.

Если объект имеет способность накапливать значительный заряд, и если имеет место высокое напряжение, статическое электричество приводит к возникновению таких серьезных проблем, как искрение, электростатическое отталкивание/притягивание или электропоражение персонала.

Полярность заряда

Статический заряд может быть либо положительным, либо отрицательным. Для разрядников постоянного тока (AC) и пассивных разрядников (щеток) полярность заряда обычно не важна.

Проблемы, связанные со статическим электричеством

Статический разряд в электронике

На эту проблему необходимо обратить внимание, т.к. она часто возникает в процессе обращения с электронными блоками и компонентами, использующимися в современных контрольно-измерительных устройствах.

В электронике основная опасность, связанная со статическим зарядом, исходит от человека, несущего заряд, и пренебрегать этим нельзя. Ток разряда порождает тепло, которое приводит к разрушению соединений, прерыванию контактов и разрыву дорожек микросхем. Высокое напряжение уничтожает также тонкую оксидную пленку на полевых транзисторах и других элементах, имеющих покрытие.

Часто компоненты не полностью выходят из строя, что можно считать еще более опасным, т.к. неисправность проявляется не сразу, а в непредсказуемый момент в процессе эксплуатации устройства.

Общее правило: при работе с чувствительными к статическому электричеству деталями и устройствами необходимо всегда принимать меры для нейтрализации заряда, накопленного на теле человека.

Электростатическое притяжение/отталкивание

Это, возможно, наиболее широко распространенная проблема, возникающая на предприятиях, связанных с производством и обработкой пластмасс, бумаги, текстиля и в смежных отраслях. Она проявляется в том, что материалы самостоятельно меняют свое поведение - склеиваются между собой или, наоборот, отталкиваются, прилипают к оборудованию, притягивают пыль, неправильно наматываются на приемное устройство и пр.

Притягивание/отталкивание происходит в соответствии с законом Кулона, в основе которого лежит принцип противоположности квадрата. В простой форме он выражается следующим образом:

Сила притяжения или отталкивания (в Ньютонах) = Заряд (А) х Заряд (В) / (Расстояние между объектами 2 (в метрах)).

Следовательно, интенсивность проявления этого эффекта напрямую связана с амплитудой статического заряда и расстоянием между притягивающимися или отталкивающимися объектами. Притягивание и отталкивание происходят в направлении силовых линий электрического поля.

Если два заряда имеют одинаковую полярность – они отталкиваются, если противоположную – притягиваются. Если один из объектов заряжен, он будет провоцировать притягивание, создавая зеркальную копию заряда на нейтральных объектах.

Риск возникновения пожара

Риск возникновения пожара не является общей для всех производств проблемой. Но вероятность возгорания очень велика на полиграфических и других предприятиях, где используются легковоспламеняющиеся растворители.

В опасных зонах наиболее распространенными источниками возгорания являются незаземленное оборудование и подвижные проводники. Если на операторе, находящемся в опасной зоне, надета спортивная обувь или туфли на токонепроводящей подошве, существует риск, что его тело будет генерировать заряд, способный спровоцировать возгорание растворителей. Незаземленные проводящие детали машин также представляют опасность. Все, что находится в опасной зоне должно быть хорошо заземлено.

Нижеследующая информация дает краткое пояснение способности статического разряда провоцировать возгорание в легковоспламеняющихся средах. Важно, чтобы неопытные продавцы были заранее осведомлены о видах оборудования, чтобы не допустить ошибки в подборе устройств для применения в таких условиях.

Способность разряда провоцировать возгорание зависит от многих переменных факторов:

  • типа разряда;
  • мощности разряда;
  • источника разряда;
  • энергии разряда;
  • наличия легковоспламеняющейся среды (растворителей в газовой фазе, пыли или горючих жидкостей);
  • минимальной энергии воспламенения (МЭВ) легковоспламеняющейся среды.

Типы разряда

Существует три основных типа – искровой, кистевой и скользящий кистевой разряды. Коронный разряд в данном случае во внимание не принимается, т.к. он отличается невысокой энергией и происходит достаточно медленно. Коронный разряд чаще всего неопасен, его следует учитывать только в зонах очень высокой пожаро- и взрывоопасности.

Искровой разряд

В основном он исходит от умеренно проводящего, электрически изолированного объекта. Это может быть тело человека, деталь машины или инструмент. Предполагается, что вся энергия заряда рассеивается в момент искрения. Если энергия выше МЭВ паров растворителя, может произойти воспламенение.

Энергия искры рассчитывается следующим образом: Е (в Джоулях) = ½ С U2.

Кистевой разряд

Кистевой разряд возникает, когда заостренные части деталей оборудования концентрируют заряд на поверхностях диэлектрических материалов, изоляционные свойства которых приводят к его накоплению. Кистевой разряд отличается более низкой энергией по сравнению с искровым и, соответственно, представляет меньшую опасность в отношении воспламенения.

Скользящий кистевой разряд

Скользящий кистевой разряд происходит на листовых или рулонных синтетических материалах с высоким удельным сопротивлением, имеющих повышенную плотность заряда и разную полярность зарядов с каждой стороны полотна. Такое явление может быть спровоцировано трением или распылением порошкового покрытия. Эффект сравним с разрядкой плоского конденсатора и может представлять такую же опасность, как искровой разряд.

Источник и энергия разряда

Величина и геометрия распределения заряда являются важными факторами. Чем больше объем тела, тем больше энергии оно содержит. Острые углы повышают мощность поля и поддерживают разряды.

Мощность разряда

Если объект, имеющий энергию, не очень хорошо проводит , например, человеческое тело, сопротивление объекта будет ослаблять разряд и понижать опасность. Для человеческого тела существует эмпирическое правило: считать, что любые растворители с внутренней минимальной энергией воспламенения менее 100 мДж могут воспламениться несмотря на то, что энергия, содержащаяся в теле, может быть выше в 2 – 3 раза.

Минимальная энергия воспламенения МЭВ

Минимальная энергия воспламенения растворителей и их концентрация в опасной зоне являются очень важными факторами. Если минимальная энергия воспламенения ниже энергии разряда, возникает риск возгорания.

Электропоражение

Вопросу риска статического удара в условиях промышленного предприятия уделяется все больше внимания. Это связано с существенным повышением требований к гигиене и безопасности труда.

Электропоражение, спровоцированное статическим электричеством, в принципе не представляет особой опасности. Оно просто неприятно и часто вызывает резкую реакцию.

Существуют две общие причины статического удара:

Наведенный заряд

Если человек находится в электрическом поле и держится за заряженный объект, например, за намоточную бобину для пленки, возможно, что его тело зарядится.

Заряд остается в теле оператора, если он находится в обуви на изолирующей подошве, до того момента, пока он не дотронется до заземленного оборудования. Заряд стекает на землю и поражает человека. Такое происходит и в случае, когда оператор дотрагивается до заряженных объектов или материалов – из-за изолирующей обуви заряд накапливается в теле. Когда оператор трогает металлические детали оборудования, заряд может стечь и спровоцировать электроудар.

При перемещении людей по синтетическим ковровым покрытиям порождается статический заряд при контакте между ковром и обувью. Электроудары, которые получают водители, покидая свою машину, провоцируются зарядом, возникшим между сиденьем и их одеждой в момент подъема. Решение этой проблемы – дотронуться до металлической детали автомобиля, например, до рамы дверного проема, до момента подъема с сиденья. Это позволяет заряду безопасно стекать на землю через кузов автомобиля и его шины.

Электропоражение, спровоцированное оборудованием

Такой электроудар возможен, хотя происходит значительно реже, чем поражение, спровоцированное материалом.

Если намоточная бобина имеет значительный заряд, случается, что пальцы оператора концентрируют заряд до такой степени, что он достигает точки пробоя и происходит разряд. Помимо этого, если металлический незаземленный объект находится в электрическом поле, он может зарядиться наведенным зарядом. По причине того, что металлический объект является токопроводящим, подвижный заряд разрядится в человека, который дотрагивается до объекта.

Если электрические заряды свободно перемещаются по проводнику, это называется электрическим током. Если они останавливаются без движения, начинают накапливаться на чем-либо, следует говорить о статическом электричестве. В соответствии с ГОСТом, статикой называют совокупность возникновения, сохранения и свободного накопления электрического заряда на внешней поверхности диэлектризованных материалов или на изоляторах.

Возникновение статического электричества

Когда физическое тело находится в обычном нейтральном состоянии, баланс отрицательно и положительно заряженных частиц в нем соблюдается. Если же он нарушается, в теле образуется электрозаряд с тем или иным знаком, возникает поляризация – заряды приходят в движение.

Дополнительная информация. Каждый физический объект способен производить заряды либо положительного, либо отрицательного направления, чем и характеризуются по трибоэлектрической шкале.

Например:

  • позитивные: воздух, шкура, асбест, стекло, кожа, слюда, шерсть, мех, свинец;
  • негативные: эбонит, тефлон, селен, полиэтилен, полиэстер, латунь, медь, никель, латекс, янтарь;
  • нейтральные: бумага, хлопок, древесина, сталь.

Статическая электризация предметов может происходить вследствие различных причин. Главными из них являются следующие:

  • непосредственный контакт между телами с последующим разделением: трение (между диэлектриками или диэлектриком и металлом), наматывание, разматывание, перемещение слоев материала друг относительно друга и другие подобные манипуляции;
  • мгновенное изменение температуры окружения: резкое охлаждение, помещение в духовку и др.;
  • радиационное воздействие, облучение ультрафиолетом или рентгеновскими лучами, наведение сильных электрических полей;
  • процессы резания – на станках для раскроя или разрезания бумажных листов;
  • специальное направленное наведение статистическим разрядом.

На молекулярном уровне возникновение статического электричества происходит вследствие сложных процессов, когда электроны и ионы со сталкивающихся неоднородных поверхностей с разными атомарными связями поверхностного притягивания начинают перераспределяться. Чем быстрее материалы или жидкости перемещаются друг относительно друга, ниже их удельное сопротивление, больше площади, вступающие в контакт и усилия взаимодействия, тем выше будут степень электризации и электрический потенциал.

Источниками возникновения электростатики, как в бытовых, так и в промышленных условиях, являются компьютерная и офисная техника, телевизоры и прочие агрегаты и приборы, питающиеся от электрического тока. Например, у самого простого компьютера имеется пара вентиляторов для охлаждения системного блока. При разгоне воздуха частички пыли, содержащиеся в нем, электризуются и, сохраняя заряд, оседают на окружающих предметах, коже и волосах людей и даже проникают в легкие.

Также статика в большом количестве накапливается на экранах мониторов. В домах и производственных помещениях электростатические заряды образуются на полах, покрытых линолеумом или ПВХ-плиткой, на людях (в волосах и на синтетической одежде).

В природе очень мощным бывает статическое электричество, возникающее при перемещении облачных масс: между ними возникают огромные потенциалы электроэнергии, что проявляется в грозовых разрядах.

В промышленности часто встречается образование статических зарядов в случаях:

  • трения лент транспортеров о валы, ремней проводов – о шкивы (особенно в случаях буксовки и застревания);
  • при прохождении горючих жидкостей по трубопроводам;
  • заполнении цистерн бензином и прочими жидкими нефтяными фракциями;
  • попадания и продвижения пылинок в воздухопроводах с большой скоростью;
  • во время размалывания, перемешивания и отсеивания сухих веществ;
  • во время взаимного сжимания диэлектрических материалов разного рода и консистенции;
  • обработке пластических масс механическим способом;
  • прохождении сжиженного газа (особенно содержащего суспензии или пыль) по трубопроводам;
  • перемещения тележек с прорезиненными шинами по изолирующему половому покрытию.

Опасность статического электричества

Наибольшую опасность накопившееся статическое электричество представляет на промышленном производстве. Может произойти неожиданное воспламенение горючего материала искрами от прикосновения оператора с оборудованием на заземлении и последующим взрывом. Энергия электростатических разрядом иногда составляет около 1,4 джоулей – это более чем достаточно для приведения смесей пыли, пара, газа и воздуха, присутствующих в любых горючих веществах, в состояние горения. По ГОСТу наибольшая энергия накопленных зарядов на поверхности промышленного объекта не должна быть более 40 процентов от наименьшей энергии для загорания материала.

При протекании некоторых технологических операций, например:

  • пересыпании и перевозке песка в грузовиках;
  • прокачке топлива по трубопроводам;
  • переливании спирта, бензола, эфира в незаземленные цистерны с большой скоростью;
  • при транспортерных работах и др. генерируются электрические потенциалы от 3 до 80 киловольт.

Обратите внимание! Для того чтобы взорвались бензиновые пары, достаточно 300 вольт, горючие газы – 3 киловольта, а горючие пыли – около 5 киловольт.

Статика также негативно отражается на работе всех точных и сверхточных приборов, радиосвязном оборудовании, создает большие проблемы в функционировании средств автоматики и телевизионной механики. Многие детали сложных электронных приборов просто не рассчитаны на такие высокие значения напряжения, образуемые статическим разрядом. Он выводит эти детали из строя, в результате чего у приборов теряется точность работы.

На людях также могут скапливаться заряженные частицы, если они носят обувь с подошвами, не проводящими ток, шерстяную, шелковую или синтетическую одежду. Электризация происходит при движении (если половое покрытие не проводит электроток) и взаимодействии с диэлектрическими предметами.

Воздействие статики на человеческое тело осуществляется в виде продолжительно протекающего электротока слабого напряжения или же моментного разряда, что вызывает легкие и не всегда приятные покалывания на коже (иногда они оцениваются как умеренные или даже сильные уколы). В целом, такое воздействие потенциалом не выше 7 джоулей считается неопасным для здоровья, однако, даже слабый разряд тока может привести к рефлекторному сокращению мышц, что чревато различными производственными травмами (попадание в рабочие зоны механизмов, захват частей тела или одежды неогороженными двигающимися элементами машин, падение с высоты).

Если рассматривать действие статического электричества на человеческий организм на клеточном уровне, то в результате срабатывания нейрорефлекторного механизма происходит раздражение кожных нейронов и мельчайших капилляров. Это приводит к изменениям в ионном составе тканей нашего тела, что проявляется в повышенной утомляемости в течение дня, постоянному раздраженному психическому состоянию, нарушению ритма сна и другим проблемам в функционировании центральной нервной системы. Общая работоспособность снижается. Провоцируемые постоянным воздействием статического электричества спазмы кровеносных сосудов могут стать причиной брадикардии – уменьшения частоты сокращений сердечной мышцы и повышенного кровяного давления.

Способы защиты от статики на производстве

Против вредного и опасного проявления накопленного статического электротока в производственных условиях разрабатывается и применяется комплекс защитных мероприятий. В их основе лежат следующие методы:

  • повышение проводящих свойств материалов и окружающей рабочей среды, что приводит к рассеиванию в пространстве периодически появляющихся электрозарядов статики;
  • снижение скоростей обработки и перемещения материалов, что значительно уменьшает возможности генерирования статических электрозарядов;
  • полномасштабное применение грамотно устроенного заземления, что помогает исключить накопление опасных потенциалов;
  • повышение устойчивости самих машин и механизмов к действию статистических разрядов;
  • недопущение проникновения электрического тока в рабочую зону.

Все способы, применяемые для предотвращения статических электрических разрядов, разделяют на конструкционные, технологические, химические, физические и механические. Три последних направлены главным образом на снижение активности генерирования электрозарядов и быстрейшему их уходу в почву. В то же время первые из перечисленных методов с заземлением не связаны.

В качестве высоконадежного средства защиты от статического электричества выступает так называемая клетка Фарадея. Она выполняется в виде мелкоячеистой сетки, ограждающей машины по всей площади, у нее имеется подключение к контуру заземления.

Благодаря такой конструкции, поля электричества не проникают внутрь клетки Фарадея, а на магнитное поле она никак не влияет. Электрические кабели, покрытые предварительно экраном из металлического листа, защищаются по таким же принципам.

Электростатический заряд можно оптимально уменьшить посредством возрастания токопроводимости промышленных материалов и проведением коронирования (т.е. создания на поверхности материалов воздушной плазмы коронным разрядом комнатной температуры). Достигается это с помощью специального подбора материалов, имеющих повышенную объемную проводимость, наращиванием рабочих площадей и повышением ионизации воздуха вокруг защищаемых механизмов. Специальные агрегаты – ионизаторы, генерируют положительно и отрицательно заряженные ионы, которые притягиваются к противоположно заряженным диэлектрикам и нейтрализуют их заряды.

Важно! Для веществ с высоким электросопротивлением такие способы защиты от статики не подходят.

Обязательным в перечне мероприятий по защите от статического электричества является заземление. В состав заземляющего устройства входит заземлитель (проводящий элемент) и проводник заземления между заземляющей точкой на почве и заземлителем. Достаточным заземление против электростатики считается при сопротивлении в любой точке оборудования не выше 1 мегаОм. Для оборудования часто используются проводящие пленки, покрывающие рабочую поверхность.

В рабочих помещениях настилаются антистатические полы, операторы должны работать в антистатической одежде и обуви (при этом сопротивление материала подошв не выше 100 ом).

Защита от статического электричества в быту

В бытовых условиях существует комплекс мер и мероприятий, помогающих предотвратить образование электростатических разрядов:

  • влажная уборка, проводимая каждый день, снижает объем циркулирующей в воздухе пыли;
  • недопущение пересыхания воздуха, ежедневное проветривание помещений;
  • применение в уборке антистатических щеток;

  • использование антистатических предметов мебели;
  • отделка дома материалами, которые хорошо снимают статику: древесина, антистатический линолеум и другие;
  • что касается одежды, шерстяную одежду снимать медленными движениями, а для снятия эффекта прилипания шелковых вещей – использовать антистатические спреи;
  • не гладить шерсть животных при холодном и сухом воздухе;
  • волосы расчесывать расческами из дерева или металла вместо пластиковых гребней.

Не стоит забывать о защите личных автомобилей от образования статики на кузове машины, особенно перед заправкой его бензином. Делается это с помощью простой антистатической полоски под днищем кузова.

Статическое электричество – это свободные электрические заряды, собираемые на различных диэлектриках. И в промышленности, и в быту происходит накопление совсем неполезного статического электричества, и необходима защита от него, поскольку такие заряды способны нанести вред как машинам, механизмам, так и промышленным объектам и здоровью человека. Только надежные методы способны свести на нет или же совсем не допустить этого отрицательного явления.

Видео

Статическое напряжение появляется в случае нарушения внутриатомного либо внутримолекулярного равновесия вследствие приобретения либо утраты электрона. Обычно атом находится в сбалансированном состоянии благодаря схожему числу положительных и отрицательных частиц — протонов и электронов. Электроны могут просто передвигаются от 1-го атома к другому. При всем этом они сформировывают положительные (где отсутствует электрон) либо отрицательные (одиночный электрон либо атом с дополнительным электроном) ионы. Когда происходит таковой дисбаланс, появляется статическое напряжение.

Электронный заряд электрона — (-) 1,6 х 10-19 кулон. Протон с таким же по величине зарядом имеет положительную полярность. Статический заряд в кулонах прямо пропорционален излишку либо недостатку электронов, т.е. числу неуравновешенных ионов. Кулон – это основная единица статического заряда, определяющая количество электричества, проходящее через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер.

У положительного иона отсутствует один электрон, как следует, он может просто принимать электрон от негативно заряженной частички. Отрицательный ион в свою очередь может быть или одиночным электроном, или атомом/молекулой с огромным числом электронов. В обоих случаях существует электрон, способный нейтрализовать положительный заряд.

Как генерируется статическое напряжение

Главные предпосылки возникновения статического напряжения:

1. Контакт меж 2-мя материалами и их отделение друг от друга (включая трение, намотку/размотку и пр.).

2. Резвый температурный перепад (к примеру, в момент помещения материала в духовой шкаф).

3. Радиация с высочайшими значениями энергии, уф-излучение, рентгеновские X-лучи, сильные электронные поля (нерядовые для промышленных производств).

4. Резательные операции (к примеру, на раскроечных станках либо бумагорезальных машинах).

5. Наведение (вызванное статическим зарядом появление электронного поля).

Поверхностный контакт и разделение материалов, может быть, являются более всераспространенными причинами появления статического напряжения на производствах, связанных с обработкой рулонных пленок и листовых пластиков. Статический заряд генерируется в процессе разматывания/наматывания материалов либо перемещения друг относительно друга разных слоев материалов. Этот процесс не полностью понятен, но более правдивое разъяснение возникновения статического напряжения в этом случае может быть получено проведением аналогии с плоским конденсатором, в каком механическая энергия при разделении пластинок преобразуется в электронную:

Результирующее напряжение = изначальное напряжение х (конечное расстояние меж пластинами/изначальное расстояние меж пластинами).

Когда синтетическая пленка касается подающего/приемного вала, низкий заряд, перетекающий от материала к валу, провоцирует дисбаланс. По мере того, как материал преодолевает зону контакта с валом, напряжение растет точно также как в случае с конденсаторными пластинами в момент их разделения.

Практика указывает, что амплитуда результирующего напряжения ограничена вследствие электронного пробоя, возникающего в промежутке меж примыкающими материалами, поверхностной проводимости и других причин. На выходе пленки из контактной зоны нередко можно слышать слабенькое потрескивание либо следить искрение. Это происходит в момент, когда статический заряд добивается величины, достаточной для пробоя окружающего воздуха. До контакта с валом синтетическая пленка исходя из убеждений электричества нейтральна, но в процессе перемещения и контакта с подающими поверхностями поток электронов направляется на пленку и заряжает ее отрицательным зарядом. Если вал железный и заземленный его положительный заряд стремительно стекает.

Большая часть оборудования имеет много валов, потому величина заряда и его полярность могут нередко изменяться. Лучший метод контроля статического заряда – это его четкое определение на участке конкретно перед проблемной зоной. Если заряд нейтрализован очень рано, он может восстановиться до того, как пленка достигнет этой проблемной зоны.

В теории появление статического заряда может быть проиллюстрировано обычный электронной схемой: C – делает функцию конденсатора, который копит заряд, как батарея. Это обычно поверхность материала либо изделия.

R – сопротивление, способное ослабить заряд материала/механизма (обычно при слабенькой циркуляции тока). Если материал является проводником, заряд стекает на землю и не делает заморочек. Если же материал является изолятором, заряд не сумеет стекать, и появляются трудности. Искровой разряд появляется в этом случае, когда напряжение скопленного заряда добивается предельного порога.

Токовая нагрузка — заряд, сгенерированный, к примеру, в процессе перемещения пленки по валу. Ток заряда заряжает конденсатор (объект) и увеличивает его напряжение U. В то время как напряжение увеличивается, ток течет через сопротивление R. Баланс будет достигнут в момент, когда ток заряда станет равен току, циркулирующему по замкнутому контуру сопротивления. (Закон Ома: U = I х R).

Если объект имеет способность копить значимый заряд, и если имеет место высочайшее напряжение, статическое напряжение приводит к появлению таких суровых заморочек, как искрение, электростатическое отталкивание/притягивание либо электропоражение персонала.

Полярность заряда

Статический заряд может быть или положительным, или отрицательным. Для разрядников неизменного тока (AC) и пассивных разрядников (щеток) полярность заряда обычно не принципиальна.

Трудности, связанные со статическим напряжением

Существует 4 главные области:

Статический разряд в электронике

На эту делему нужно направить внимание, т.к. она нередко появляется в процессе воззвания с электрическими блоками и компонентами, использующимися в современных контрольно-измерительных устройствах.

В электронике основная опасность, связанная со статическим зарядом, исходит от человека, несущего заряд, и третировать этим нельзя. Ток разряда порождает тепло, которое приводит к разрушению соединений, прерыванию контактов и разрыву дорожек микросхем. Высочайшее напряжение уничтожает также узкую оксидную пленку на полевых транзисторах и других элементах, имеющих покрытие.

Нередко составляющие не стопроцентно выходят из строя, что можно считать еще больше небезопасным, т.к. неисправность проявляется не сходу, а в непредсказуемый момент в процессе использования устройства.

Общепринятое правило: при работе с чувствительными к статическому электричеству деталями и устройствами нужно всегда принимать конструктивные меры для нейтрализации заряда, скопленного на человеческом теле. Подробная информация по этому вопросу содержится в документах евро эталона CECC 00015.

Электростатическое притяжение/отталкивание

Это, может быть, более обширно всераспространенная неувязка, возникающая на предприятиях, связанных с созданием и обработкой пластмасс, бумаги, текстиля и в смежных отраслях. Она проявляется в том, что материалы без помощи других меняют свое поведение — склеиваются меж собой либо, напротив, отталкиваются, прилипают к оборудованию, притягивают пыль, некорректно наматываются на приемное устройство и пр.

Притягивание/отталкивание происходит в согласовании с законом Кулона, в базе которого лежит принцип противоположности квадрата. В обычный форме он выражается последующим образом:

Сила притяжения либо отталкивания (в Ньютонах) = Заряд (А) х Заряд (В) / (Расстояние меж объектами 2 (в метрах)).

Как следует, интенсивность проявления этого эффекта впрямую связана с амплитудой статического заряда и расстоянием меж притягивающимися либо отталкивающимися объектами. Притягивание и отталкивание происходят в направлении силовых линий электронного поля.

Если два заряда имеют схожую полярность – они отталкиваются, если обратную – притягиваются. Если один из объектов заряжен, он будет стимулировать притягивание, создавая зеркальную копию заряда на нейтральных объектах.

Риск появления пожара

Риск появления пожара не является общей для всех производств неувязкой. Но возможность возгорания очень велика на полиграфических и других предприятиях, где употребляются легковоспламеняющиеся растворители.

В небезопасных зонах более всераспространенными источниками возгорания являются незаземленное оборудование и подвижные проводники. Если на операторе, находящемся в небезопасной зоне, насажена спортивная обувь либо туфли на токонепроводящей подошве, существует риск, что его тело будет генерировать заряд, способный спровоцировать возгорание растворителей. Незаземленные проводящие детали машин также представляют опасность. Все, что находится в небезопасной зоне должно быть отлично заземлено.

Нижеследующая информация дает короткое пояснение возможности статического разряда стимулировать возгорание в легковоспламеняющихся средах. Принципиально, чтоб неопытные торговцы были заблаговременно ознакомлены о видах оборудования, чтоб не допустить ошибки в подборе устройств для внедрения в таких критериях.

Способность разряда стимулировать возгорание находится в зависимости от многих переменных причин:
— типа разряда;
— мощности разряда;
— источника разряда;
— энергии разряда;
— наличия легковоспламеняющейся среды (растворителей в газовой фазе, пыли либо горючих жидкостей);
— малой энергии воспламенения (МЭВ) легковоспламеняющейся среды.

Типы разряда

Существует три главных типа – искровой, кистевой и скользящий кистевой разряды. Коронный разряд в этом случае во внимание не принимается, т.к. он отличается низкой энергией и происходит довольно медлительно. Коронный разряд в большинстве случаев безопасен, его следует учесть исключительно в зонах очень высочайшей пожаро- и взрывоопасности.

Искровой разряд

В главном он исходит от равномерно проводящего, электрически изолированного объекта. Это может быть человеческое тело, деталь машины либо инструмент. Подразумевается, что вся энергия заряда рассеивается в момент искрения. Если энергия выше МЭВ паров растворителя, может произойти воспламенение.

Энергия искры рассчитывается последующим образом: Е (в Джоулях) = ½ С U2.

Кистевой разряд

Кистевой разряд появляется, когда заостренные части деталей оборудования концентрируют заряд на поверхностях диэлектрических материалов, изоляционные характеристики которых приводят к его скоплению. Кистевой разряд отличается более низкой энергией по сопоставлению с искровым и, соответственно, представляет наименьшую опасность в отношении воспламенения.

Скользящий кистевой разряд

Скользящий кистевой разряд происходит на листовых либо рулонных синтетических материалах с высочайшим удельным сопротивлением, имеющих завышенную плотность заряда и разную полярность зарядов с каждой стороны полотна. Такое явление может быть спровоцировано трением либо распылением порошкового покрытия. Эффект сравним с разрядкой плоского конденсатора и может представлять такую же опасность, как искровой разряд.

Источник и энергия разряда

Величина и геометрия рассредотачивания заряда являются необходимыми факторами. Чем больше объем тела, тем больше энергии оно содержит. Острые углы увеличивают мощность поля и поддерживают разряды.

Мощность разряда

Если объект, имеющий энергию, не прекрасно проводит электронный ток, к примеру, тело человека, сопротивление объекта будет ослаблять разряд и понижать опасность. Для тела человека существует эмпирическое правило: считать, что любые растворители с внутренней малой энергией воспламенения наименее 100 мДж могут возгореться невзирая на то, что энергия, содержащаяся в теле, может быть выше в 2 – 3 раза.

Малая энергия воспламенения МЭВ

Малая энергия воспламенения растворителей и их концентрация в небезопасной зоне являются очень необходимыми факторами. Если малая энергия воспламенения ниже энергии разряда, появляется риск возгорания. Электропоражение

Вопросу риска статического удара в критериях промышленного предприятия уделяется больше внимания. Это связано с значимым увеличением требований к гигиене и безопасности труда.

Электропоражение, спровоцированное статическим напряжением, в принципе не представляет особенной угрозы. Оно просто неприятно и нередко вызывает резкую реакцию.

Есть две общие предпосылки статического удара:

Наведенный заряд

Если человек находится в электронном поле и держится за заряженный объект, к примеру, за намоточную бобину для пленки, может быть, что его тело зарядится.

Заряд остается в теле оператора, если он находится в обуви на изолирующей подошве, до того момента, пока он не дотронется до заземленного оборудования. Заряд стекает на землю и поражает человека. Такое происходит и в случае, когда оператор дотрагивается до заряженных объектов либо материалов – из-за изолирующей обуви заряд скапливается в теле. Когда оператор трогает железные детали оборудования, заряд может стечь и спровоцировать электроудар.

При перемещении людей по синтетическим ковровым покрытиям порождается статический заряд при контакте меж ковром и обувью. Электроудары, которые получают водители, покидая свою машину, провоцируются зарядом, появившимся меж сидением и их одежкой в момент подъема. Решение этой трудности – дотронуться до железной детали автомобиля, к примеру, до рамы дверного проема, до момента подъема с сидения. Это позволяет заряду неопасно стекать на землю через кузов автомобиля и его шины.

Электропоражение, спровоцированное оборудованием

Таковой электроудар вероятен, хотя происходит существенно пореже, чем поражение, спровоцированное материалом.

Если намоточная бобина имеет значимый заряд, случается, что пальцы оператора концентрируют заряд до таковой степени, что он добивается точки пробоя и происходит разряд. Кроме этого, если железный незаземленный объект находится в электронном поле, он может зарядиться наведенным зарядом. Из-за того, что железный объект является токопроводящим, подвижный заряд разрядится в человека, который дотрагивается до объекта.

В этой статье я постараюсь максимально доступно и наглядно, простым языком, без лишних сложных физических терминов, объяснить, что такое статическое электричество, как оно образуется и что является лучшей защитой от него.

Что такое статическое электричество, как оно образуется

Как я уже сказал, статическое электричество может воздействовать на нас в различных местах, в любой момент, даже тогда, когда вы просто пытаетесь открыть дверь, касаясь дверной ручки.

Чтобы понять причину появления статического электричества для начала нужно вспомнить о природе материи.

Как вы знаете вся материя состоит из атомов, которые, в свою очередь, состоят из трех разных видов более мелких частиц:

- отрицательно заряженных электронов

- положительно заряженных протонов

- не имеющих зарядов нейтронов

В большинстве тел, чаще всего, электроны и протоны полностью компенсируют друг друга, их количество в атомах равное, соответственно, эти предметы электронейтральны.

Но так как электроны очень маленькие частицы и их масса незначительна, то даже обычное трение даёт слабо связанным электронам достаточно энергии, чтобы они покинули свои атомы и перешли в атомы на другой поверхности.

Когда это происходит у одного объекта протонов остаётся больше, чем электронов, и он становится положительно заряженным, а объект у которого больше электронов, наоборот, накапливает отрицательный заряд. Такая ситуация называется дисбалансом зарядов или еще разделением зарядов.

Но как вы знаете, природа постоянно стремится к восстановлению равновесия поэтому, когда одно из заряженных тел вступает в контакт с другим, свободные электроны немедленно используют эту возможность попасть туда где они нужнее, где их не хватает - покинув отрицательно заряженный объект, чтобы восстановить баланс.

Вот это перескакивание электронов от отрицательно заряженного тела и есть знакомое всем явление - статическое электричество, называемое еще статическим разрядом .

К счастью это происходит далеко не с каждым объектом, иначе нас бы било током постоянно.

Чаще всего слабо связанными электронами обладают материалы - электрические проводники, самым ярким представителем которых являются металлы. А вот у диэлектриков, изоляторов, материалов, плохо проводящих электрический ток, электроны прочносвязанные, они свободно не переходят к атомам других материалов.

С большей вероятностью накапливание электрического разряда происходит именно при взаимодействии проводника с диэлектриком, при трении одного материала о другой.

Так, например, когда вы просто идёте по ковру, электроны вашего тела, из-за трения ног об ковер, перемещаются на него, так как человеческое тело проводник электрического тока. В то же время материал ковра - шерсть, сопротивляется отделению своих прочносвязанных электронов, являясь диэлектриком.

И хотя в момент, когда вы находитесь на ковре, ваше тело и ковер вместе остаются электрически нейтральными у них уже есть разделение разрядов.

И теперь, когда вы просто дотрагиваетесь до металлической дверной ручки - немедленно ощущаете статический разряд. Всё дело в том, что свободные электроны с металлической ручки перескакивают на вашу руку замещая потерянные вашим телом электроны, которые перескочили на ковер.

Теперь, я думаю, вам понятно, что такое статическое электричество и почему оно образуется. Кстати, его самым ярким проявлением в природе являются молнии.

При определенных условиях в облаках происходит разделение зарядов, после чего этот дисбаланс нейтрализуется, электроны высвобождаются и поглощаются другими телами - домами, землей или даже другим облаком, с образованием гигантской вспышки - молнии.

Защита от статического электричества

И так, зная природу статического электричества, вы сможете эффективно применять и защиту от него, не только дома в быту, но и на производстве.

Есть несколько основных видов мер защиты от статического электричества:

Создание условий для рассеивания свободных электронов

Предупреждение возникновения и накапливания статического электричества

ЗАЗЕМЛЕНИЕ

Основным и самым главным средств защиты от статического электричества является организация заземления токопроводящих, не находящихся под напряжением элементов, будь то корпус стиральной машины, автомобиля или токарного станка. Делается это, чтобы образующиеся свободные электроны, идя по пути наименьшего сопротивления, отводились в землю.

У большей части домашней бытовой техники - холодильников, стиральных машин и т.д. для этого используется третий желто-зеленый заземляющий проводник питающего кабеля, которым он подключается к сети. В остальных же случаях на корпус подводится отдельный провод, также подключаемый к системе заземления.

В случае же с автомобилем, используется токопроводящая полоса или цепь, которая крепиться одним концом к кузову машины, а второй касается земли.

Еще одним из распространенных способов защиты от статического электричества является увеличение электропроводимости диэлектрических материалов , за счет чего они получают возможность отводить свободные электроны.

Достигается это путем нанесения на диэлектрические предметы токопроводящих покрытий или материалов, например, поверхностной плёнки из токопроводящего материала, тонкой фольги и т.д.

В частности, в быту, можно пользоваться специальными средствами, так называемыми, антистатиками, думаю многие женщины понимают, о чем идёт речь.

Такой спрей-антистатик обычно состоит из токопроводящего полимера, растворённого в смеси деионизированной воды и спирта. После обработки поверхности раствор испаряется, а полимер остается в виде тончайшей токопроводящей плёнки, которая не даёт заряду накапливаться на поверхности предмета.

Подобный эффект также достигается увеличения влажности воздуха до 60-70%, при котором на поверхности диэлектриков появляется тонкая пленка влаги, за счет которой, обеспечивается достаточная поверхностная электропроводность материалов.

ИОНИЗАЦИЯ ВОЗДУХА

Эффективным и доступным средством защиты от статического электричества также является ионизация воздуха.

Для этого используется специальный прибор - ионизатор, который генерирует поток положительно и отрицательно заряженных ионов, распространяемых вентилятором. Они, притягиваются к молекулам противоположной полярности окружающих предметов и нейтрализуют статический заряд на них.

Если же не получается бороться со статическим электричеством вышеперечисленными способами, можно действовать более кардинально. Например, начать пользоваться повседневными предметами их других материалов слабоэлектризующимися или неэлектризующимися вовсе. Заменить чехлы в автомобиле, купить другие тапочки для дома и т.д.

Если же вы знаете другие действенные способы защиты от статического электричества - обязательно пишите о них в комментариях к статье, это будет полезно и интересно многим. Кроме того, как всегда приветствуется здоровая критика, вопросы, предложения, буду рад общению.

Происхождение

Электризация диэлектриков трением может возникнуть при соприкосновении двух разнородных веществ из-за различия атомных и молекулярных сил (из-за различия работы выхода электрона из материалов). При этом происходит перераспределение электронов (в жидкостях и газах ещё и ионов) с образованием на соприкасающихся поверхностях электрических слоёв с противоположными знаками электрических зарядов. Фактически атомы и молекулы одного вещества, обладающие более сильным притяжением, отрывают электроны от другого вещества.

С другой стороны, такие напряжения могут быть опасны для элементов различных электронных приборов - микропроцессоров , транзисторов и т. п. Поэтому при работе с радиоэлектронными компонентами рекомендуется принимать меры по предотвращению накопления статического заряда.

Молнии

В результате движения воздушных потоков, насыщенных водяными парами, образуются грозовые облака, являющиеся носителями статического электричества. Электрические разряды образуются между разноименными заряженными облаками или, чаще, между заряженным облаком и землей. При достижении определенной разности потенциалов происходит разряд молнии между облаками или на земле. Для защиты от молний устанавливаются молниеотводы , проводящие разряд напрямую в землю.

Примечания

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Статическое электричество" в других словарях:

    Статическое электричество - см. Электричество статическое … Российская энциклопедия по охране труда

    СТАТИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО, некоторое количество ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ в состоянии покоя, а не движения, как в случае с ЭЛЕКТРИЧЕСКИМ ТОКОМ. Как правило, незаряженные АТОМЫ обладают одинаковым количеством положительных и отрицательных ЭЛЕКТРОНОВ.… … Научно-технический энциклопедический словарь

    статическое электричество - 3.1 статическое электричество: Совокупность явлений, связанных с разделением положительных и отрицательных электрических зарядов, сохранением и релаксацией свободного электростатического заряда на поверхности или в объеме диэлектриков или на… … Словарь-справочник терминов нормативно-технической документации

    статическое электричество - rus статическое электричество (с) eng static electricity fra électricité (f) statique deu statische Elektrizität (f) spa electricidad (f) estática … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    статическое электричество - statinė elektra statusas T sritis fizika atitikmenys: angl. static electricity vok. statische Elektrizität, f rus. статическое электричество, n pranc. électricité statique, f … Fizikos terminų žodynas

    Электричество статическое - Статическое электричество: совокупность явлений, связанных с разделением положительных и отрицательных электрических зарядов, сохранением и релаксацией свободного электростатического заряда на поверхности или в объеме диэлектриков или на… … Официальная терминология

    Электричество - (Electricity) Понятие электричество, получение и применение электричества Информация о понятии электричество, получение и применение электричества Содержание — это понятие, выражающее свойства и явления, обусловленные структурой физических… … Энциклопедия инвестора

    Сущ., с., употр. сравн. часто Морфология: (нет) чего? электричества, чему? электричеству, (вижу) что? электричество, чем? электричеством, о чём? об электричестве 1. Электричеством называют вид энергии, которую люди используют для приведения в… … Толковый словарь Дмитриева

    - (от греч. elektron янтарь, так как янтарь притягивает легкие тела). Особенное свойство некоторых тел, проявляющееся только при известных условиях, напр. при трении, теплоте, или химических реакциях, и обнаруживающееся притягиванием более легких… … Словарь иностранных слов русского языка